ECE562, Fall 2020: Midterm

1. Problem 1

Let $X_n = X(nT)$ be a discrete-time random process obtained by sampling a realvalued continuous-time mean zero stationary process X(t) with period T.

- (a) Express $r_X(k)$ in terms of $R_X(\tau)$, where $r_X(k)$ and $R_X(\tau)$ are the autocorrelation sequence and function for the discrete- and continuous-time processes, respectively.
- (b) Find $r_X(k)$ if the power density spectrum of X(t) is $S_X(\omega) = 1, 0 \le |\omega| \le 2\pi B$ and zero otherwise.
- (c) Determine T such that X_n is a white sequence.

2. **Problem 2**

Consider the space S_N of real-valued signals on the interval [0, 1) with the property that each signal is piecewise constant over subintervals of the form $\left[\frac{k}{N}, \frac{k+1}{N}\right), k = 0, 1, \ldots, N-1$.

- (a) Find an orthonormal basis $\{\psi_0, \psi_1, \dots, \psi_{N-1}\}$ for this signal space.
- (b) Let N = 2 and consider the constellation $\{(\sqrt{\mathcal{E}}, 0), (0, \sqrt{\mathcal{E}}), (-\sqrt{\mathcal{E}}, 0), (0, -\sqrt{\mathcal{E}})\}$ of 4 signals in S_2 , each with energy \mathcal{E} . **True or False**: Among all constellations of 4 signals in S_2 with energy of each signal $\leq \mathcal{E}$, the aforementioned constellation results in low probability of error in AWGN ($\mathcal{N}(0, N_0/2)$) assuming equiprobable signals. Justify your answer.
- (c) Compute the minimum distance d_{\min} and bound P_e for the constellation in the previous part assuming equiprobable signals.

3. Problem 3

Consider a system employing antipodal signaling in which the input to the detector is $y_k = A_k + n_k + w_k$, where $A_k \in \{\pm 1\}$ with equal probabilities, $n_k \in \{-\frac{1}{4}, 0, \frac{1}{4}\}$ is a discrete noise random variable (introduced, e.g., by an adversary) such that $P(n_k = -\frac{1}{4}) = P(n_k = \frac{1}{4}) = \frac{3}{8}$ and $P(n_k = 0) = \frac{1}{4}$ and $w_k \sim \mathcal{N}(0, 1)$ is Gaussian noise. Suppose that A_k, n_k, w_k are independent. Express P_e in terms of the *Q*function for a detector with decision threshold $\tau = 0$.

4. Problem 4

Consider a modulation scheme in which blocks of ν bits determine a modulated waveform of the form $\operatorname{Re}\{A_i e^{j\theta_i} e^{j2\pi ft}\}$ on [0,T], where f = 1/T. The first κ bits determine $\theta_i \in \mathbb{R}$ and the remaining $\nu - \kappa$ bits determine $A_i \in \mathbb{R}$.

- (a) Find an orthonormal basis for the modulated waveforms.
- (b) Find the dimension of the space spanned by this basis.