ECE562, Fall 2020: Midterm

1. Problem 1

Let $X_{n}=X(n T)$ be a discrete-time random process obtained by sampling a realvalued continuous-time mean zero stationary process $X(t)$ with period T.
(a) Express $r_{X}(k)$ in terms of $R_{X}(\tau)$, where $r_{X}(k)$ and $R_{X}(\tau)$ are the autocorrelation sequence and function for the discrete- and continuous-time processes, respectively.
(b) Find $r_{X}(k)$ if the power density spectrum of $X(t)$ is $S_{X}(\omega)=1,0 \leq|\omega| \leq 2 \pi B$ and zero otherwise.
(c) Determine T such that X_{n} is a white sequence.

2. Problem 2

Consider the space \mathcal{S}_{N} of real-valued signals on the interval $[0,1)$ with the property that each signal is piecewise constant over subintervals of the form $\left[\frac{k}{N}, \frac{k+1}{N}\right), k=$ $0,1, \ldots, N-1$.
(a) Find an orthonormal basis $\left\{\psi_{0}, \psi_{1}, \ldots, \psi_{N-1}\right\}$ for this signal space.
(b) Let $N=2$ and consider the constellation $\{(\sqrt{\mathcal{E}}, 0),(0, \sqrt{\mathcal{E}}),(-\sqrt{\mathcal{E}}, 0),(0,-\sqrt{\mathcal{E}})\}$ of 4 signals in \mathcal{S}_{2}, each with energy \mathcal{E}. True or False: Among all constellations of 4 signals in \mathcal{S}_{2} with energy of each signal $\leq \mathcal{E}$, the aforementioned constellation results in low probability of error in AWGN $\left(\mathcal{N}\left(0, N_{0} / 2\right)\right)$ assuming equiprobable signals. Justify your answer.
(c) Compute the minimum distance $d_{\min }$ and bound P_{e} for the constellation in the previous part assuming equiprobable signals.

3. Problem 3

Consider a system employing antipodal signaling in which the input to the detector is $y_{k}=A_{k}+n_{k}+w_{k}$, where $A_{k} \in\{ \pm 1\}$ with equal probabilities, $n_{k} \in\left\{-\frac{1}{4}, 0, \frac{1}{4}\right\}$ is a discrete noise random variable (introduced, e.g., by an adversary) such that $P\left(n_{k}=-\frac{1}{4}\right)=P\left(n_{k}=\frac{1}{4}\right)=\frac{3}{8}$ and $P\left(n_{k}=0\right)=\frac{1}{4}$ and $w_{k} \sim \mathcal{N}(0,1)$ is Gaussian noise. Suppose that A_{k}, n_{k}, w_{k} are independent. Express P_{e} in terms of the Q function for a detector with decision threshold $\tau=0$.

4. Problem 4

Consider a modulation scheme in which blocks of ν bits determine a modulated waveform of the form $\operatorname{Re}\left\{A_{i} e^{\jmath \theta_{i}} e^{\jmath 2 \pi f t}\right\}$ on $[0, T]$, where $f=1 / T$. The first κ bits determine $\theta_{i} \in \mathbb{R}$ and the remaining $\nu-\kappa$ bits determine $A_{i} \in \mathbb{R}$.
(a) Find an orthonormal basis for the modulated waveforms.
(b) Find the dimension of the space spanned by this basis.

