ECE562, Fall 2020: Problem Set #5 Due Dec 9, 2020

1. Majorization and Schur-convexity

Many nonconvex optimization problems that involve matrix-valued variables (e.g., those arising in MIMO communications) can be transformed into simple problems with scalar variables by relying on *majorization theory*. Majorization makes explicit the notion of *spread* of vector elements, i.e., defines in a specific way the notion of the elements of a vector \mathbf{x} being 'less spread out' than the elements of a vector \mathbf{y} . An interesting instance of majorization theory is the *Lorenz curve* in economics, which characterizes the distribution of total wealth in a population.

For $\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ (row vector) let $x_{[1]} \geq \cdots \geq x_{[n]}$ and $x_{(1)} \leq \cdots \leq x_{(n)}$ be the components of \mathbf{x} in decreasing and increasing orders, respectively. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we say that \mathbf{y} majorizes \mathbf{x} , denoted by $\mathbf{x} \prec \mathbf{y}$, if $\sum_{i=1}^k x_{[i]} \leq \sum_{i=1}^k y_{[i]}, 1 \leq k < n$ and $\sum_{i=1}^n x_{[i]} = \sum_{i=1}^n y_{[i]}$ or equivalently, if $\sum_{i=1}^k x_{(i)} \geq \sum_{i=1}^k y_{(i)}, 1 \leq k < n$ and $\sum_{i=1}^n x_{(i)} = \sum_{i=1}^n y_{(i)}$. Alternatively, $\mathbf{x} \prec \mathbf{y}$ if and only if $\mathbf{x} = \mathbf{y}\mathbf{P}$ for some doubly stochastic matrix \mathbf{P} [Hardy, Littlewood, Pólya, 1929]. Intuitively, $\mathbf{x} \prec \mathbf{y}$ implies that \mathbf{x} is more mixed than \mathbf{y} . \prec is a preordering on \mathbb{R}^n and a proper partial ordering on $\mathcal{D} = \{\mathbf{x} : x_1 \geq x_2 \geq \cdots \geq x_n\}$. Functions that preserve the ordering of majorization are said to be Schur-convex. More precisely, a real-valued function g defined on a set $\mathcal{C} \subseteq \mathbb{R}^n$ is said to be Schur-convex on \mathcal{C} if $\mathbf{x} \prec \mathbf{y}$ on $\mathcal{C} \Rightarrow g(\mathbf{x}) \leq g(\mathbf{y})$ and Schur-concave on \mathcal{C} if $\mathbf{x} \prec \mathbf{y}$ on $\mathcal{C} \Rightarrow g(\mathbf{x}) \geq g(\mathbf{y})$. Clearly, g is Schur-concave if and only if -g is Schur-convex.

- (a) Show that if \mathbf{P}_1 and \mathbf{P}_2 are doubly stochastic, then so is $\mathbf{P} = \mathbf{P}_1 \mathbf{P}_2$.
- (b) Show that if $\mathbf{xP} \prec \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^n$, then **P** is doubly stochastic.
- (c) For $\mathbf{x} \in \mathbb{R}^n$, let $d(\mathbf{x}) = x_{[1]} x_{[n]}$. If **P** is a doubly stochastic matrix such that $P_{ij} \ge \alpha, \forall (i, j)$, prove that $d(\mathbf{xP}) \le (1 2\alpha)d(\mathbf{x})$.
- (d) Let $\mathbf{P}_1, \mathbf{P}_2, \ldots$ be a sequence of $n \times n$ doubly stochastic matrices and define the sequence $\mathbf{x}_j = \mathbf{x}_{j-1}\mathbf{P}_j$ for some initial vector $\mathbf{x}_0 \in \mathbb{R}^n$. Clearly, $\mathbf{x}_0 \succ \mathbf{x}_1 \succ \cdots$. Moreover, $\mathbf{x}_j \succ \bar{x}\mathbf{1}, \forall j \ge 0$, where $\bar{x} = \frac{\sum_{i=1}^n x_i}{n}$ and $\mathbf{1}$ is the all-ones vector. Show that if all elements of every \mathbf{P}_j are $\ge \alpha$, then $\lim_{j\to\infty} \mathbf{x}_j = \bar{x}\mathbf{1}$.
- (e) Let **A** be an $n \times n$ Hermitian matrix with vector of diagonal entries diag(**A**). Suppose that the vector of the corresponding eigenvalues is denoted by λ . Show that diag(**A**) $\prec \lambda$.
- (f) Let $\mathcal{I} \subset \mathbb{R}$ be an interval and $g : \mathcal{I} \to \mathbb{R}$ be a convex function. Prove that $f(\mathbf{x}) = \sum_{i=1}^{2} g(x_i)$ is Schur-convex on \mathcal{I}^2 .