ECE562, Fall 2020: Problem Set \#5

Due Dec 9, 2020

1. Majorization and Schur-convexity

Many nonconvex optimization problems that involve matrix-valued variables (e.g., those arising in MIMO communications) can be transformed into simple problems with scalar variables by relying on majorization theory. Majorization makes explicit the notion of spread of vector elements, i.e., defines in a specific way the notion of the elements of a vector \mathbf{x} being 'less spread out' than the elements of a vector \mathbf{y}. An interesting instance of majorization theory is the Lorenz curve in economics, which characterizes the distribution of total wealth in a population.

For $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \in \mathbb{R}^{n}$ (row vector) let $x_{[1]} \geq \cdots \geq x_{[n]}$ and $x_{(1)} \leq \cdots \leq x_{(n)}$ be the components of \mathbf{x} in decreasing and increasing orders, respectively. For $\mathbf{x}, \mathbf{y} \in$ \mathbb{R}^{n} we say that \mathbf{y} majorizes \mathbf{x}, denoted by $\mathbf{x} \prec \mathbf{y}$, if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, 1 \leq k<n$ and $\sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]}$ or equivalently, if $\sum_{i=1}^{k} x_{(i)} \geq \sum_{i=1}^{k} y_{(i)}, 1 \leq k<n$ and $\sum_{i=1}^{n} x_{(i)}=\sum_{i=1}^{n} y_{(i)}$. Alternatively, $\mathbf{x} \prec \mathbf{y}$ if and only if $\mathbf{x}=\mathbf{y P}$ for some doubly stochastic matrix \mathbf{P} [Hardy, Littlewood, Pólya, 1929]. Intuitively, $\mathbf{x} \prec \mathbf{y}$ implies that \mathbf{x} is more mixed than \mathbf{y}. \prec is a preordering on \mathbb{R}^{n} and a proper partial ordering on $\mathcal{D}=\left\{\mathbf{x}: x_{1} \geq x_{2} \geq \cdots \geq x_{n}\right\}$. Functions that preserve the ordering of majorization are said to be Schur-convex. More precisely, a real-valued function g defined on a set $\mathcal{C} \subseteq \mathbb{R}^{n}$ is said to be Schur-convex on \mathcal{C} if $\mathbf{x} \prec \mathbf{y}$ on $\mathcal{C} \Rightarrow g(\mathbf{x}) \leq g(\mathbf{y})$ and Schur-concave on \mathcal{C} if $\mathbf{x} \prec \mathbf{y}$ on $\mathcal{C} \Rightarrow g(\mathbf{x}) \geq g(\mathbf{y})$. Clearly, g is Schur-concave if and only if $-g$ is Schur-convex.
(a) Show that if \mathbf{P}_{1} and \mathbf{P}_{2} are doubly stochastic, then so is $\mathbf{P}=\mathbf{P}_{1} \mathbf{P}_{2}$.
(b) Show that if $\mathbf{x P} \prec \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^{n}$, then \mathbf{P} is doubly stochastic.
(c) For $\mathbf{x} \in \mathbb{R}^{n}$, let $d(\mathbf{x})=x_{[1]}-x_{[n]}$. If \mathbf{P} is a doubly stochastic matrix such that $P_{i j} \geq \alpha, \forall(i, j)$, prove that $d(\mathbf{x P}) \leq(1-2 \alpha) d(\mathbf{x})$.
(d) Let $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots$ be a sequence of $n \times n$ doubly stochastic matrices and define the sequence $\mathbf{x}_{j}=\mathbf{x}_{j-1} \mathbf{P}_{j}$ for some initial vector $\mathbf{x}_{0} \in \mathbb{R}^{n}$. Clearly, $\mathbf{x}_{0} \succ \mathbf{x}_{1} \succ \cdots$. Moreover, $\mathbf{x}_{j} \succ \bar{x} \mathbf{1}, \forall j \geq 0$, where $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ and $\mathbf{1}$ is the all-ones vector. Show that if all elements of every \mathbf{P}_{j} are $\geq \alpha$, then $\lim _{j \rightarrow \infty} \mathbf{x}_{j}=\bar{x} \mathbf{1}$.
(e) Let \mathbf{A} be an $n \times n$ Hermitian matrix with vector of diagonal entries $\operatorname{diag}(\mathbf{A})$. Suppose that the vector of the corresponding eigenvalues is denoted by $\boldsymbol{\lambda}$. Show that $\operatorname{diag}(\mathbf{A}) \prec \boldsymbol{\lambda}$.
(f) Let $\mathcal{I} \subset \mathbb{R}$ be an interval and $g: \mathcal{I} \rightarrow \mathbb{R}$ be a convex function. Prove that $f(\mathbf{x})=\sum_{i=1}^{2} g\left(x_{i}\right)$ is Schur-convex on \mathcal{I}^{2}.

