ECE 562 Advanced Digital Communications

University of Illinois at Urbana-Champaign

Fall 2020

HW4 Solution

Instructor: Dimitrios Katselis

Problem 1

(a) By the hints provided during office hours,

$$
X_{r c}^{\prime \prime}(f)=\left\{\begin{array}{cc}
-\frac{T^{3} \pi^{2}}{2 \beta^{2}} \cos \left(\frac{\pi T}{\beta}\left(|f|-\frac{1-\beta}{2 T}\right)\right), & \frac{1-\beta}{2 T} \leq|f| \leq \frac{1+\beta}{2 T} \\
0, & \text { otherwise }
\end{array}\right.
$$

or

$$
X_{r c}^{\prime \prime}(f)=-\frac{T^{2} \pi^{2}}{\beta^{2}}\left[X_{r c}(f)-\frac{T}{2}\left(u\left(f+\frac{1-\beta}{2 T}\right)-u\left(f-\frac{1-\beta}{2 T}\right)+u\left(f+\frac{1+\beta}{2 T}\right)-u\left(f-\frac{1+\beta}{2 T}\right)\right)\right]
$$

Using now the pair $\mathcal{F}\left\{\frac{d^{n}}{d t^{n}} x(t)\right\}=(\jmath 2 \pi f)^{n} X(f)$ and the dual to the derivative theorem of the Fourier transform $\mathcal{F}\{-\jmath 2 \pi t x(t)\}=X^{\prime}(f)$, the inverse Fourier transform to both sides of the last equation yields

$$
-4 \pi^{2} t^{2} x_{r c}(t)=-\frac{T^{2} \pi^{2}}{\beta^{2}}\left[x_{r c}(t)-\frac{T}{2} \frac{1}{\pi t}\left(\sin \left(\frac{1-\beta}{2 T} 2 \pi t\right)+\sin \left(\frac{1+\beta}{2 T} 2 \pi t\right)\right)\right]
$$

Solving for $x_{r c}(t)$ the result follows.
(b) We first note that

$$
\frac{\sin (\pi t / T)}{\pi t / T}=1
$$

for $t=0$ and 0 for $t=n T$. Also,

$$
\frac{\cos (\beta \pi t / T)}{1-4 \beta^{2} t^{2} / T^{2}}=1
$$

for $t=0$ and $<\infty$ for $t \neq 0$ (use of L'Hôpital's rule for values of t such that $4 \beta^{2} t^{2} / T^{2}=1$). Therefore,

$$
x_{r c}(n T)=\left\{\begin{array}{ll}
1, & n=0 \\
0, & n \neq 0
\end{array} .\right.
$$

(c)

$$
\begin{aligned}
X_{r c}(f) & =\int_{-\frac{1+\beta}{2 T}}^{-\frac{1-\beta}{2 T}} \frac{T}{2}\left[1+\cos \left(\frac{\pi T}{\beta}\left(-f-\frac{1-\beta}{2 T}\right)\right)\right] d f \\
& +\int_{-\frac{1-\beta}{2 T}}^{\frac{1-\beta}{2 T}} T d f+\int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} \frac{T}{2}\left[1+\cos \left(\frac{\pi T}{\beta}\left(f-\frac{1-\beta}{2 T}\right)\right)\right] d f \\
& =1+\frac{T}{2}\left[\int_{-\frac{1+\beta}{2 T}}^{-\frac{1-\beta}{2 T}} \cos \left(\frac{\pi T}{\beta}\left(f+\frac{1-\beta}{2 T}\right)\right) d f+\int_{\frac{1-\beta}{2 T}}^{\frac{1+\beta}{2 T}} \cos \left(\frac{\pi T}{\beta}\left(f-\frac{1-\beta}{2 T}\right)\right) d f\right] \\
& =1
\end{aligned}
$$

where the even symmetry of $\cos (x)$ has been used and the two straighforward integrations have been evaluated.

Problem 2

(a) Clearly, $h(t)=\mathcal{F}^{-1}\{H(f)\}=\delta(t)+\frac{a}{2}\left[\delta\left(t-t_{0}\right)+\delta\left(t+t_{0}\right)\right]$ and the result follows.
(b) Let $x(t)=\sum_{n} c_{n} s(t-n T)$. Then $y(t)=x(t) * h(t)+w(t)$ and the result should be explicit based on the discussion during office hours.

Problem 3

Based on the hints provided during office hours, we have that
(a) $\mathbf{C}=\mathbf{H}^{+}$, i.e., the Moore-Penrose pseudoinverse of \mathbf{H}.
(b) Let the SVD of the channel matrix be $\mathbf{H}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger}$ where $\mathbf{U} \in \mathbb{C}^{n_{R} \times n_{R}}, \mathbf{V} \in \mathbb{C}^{n_{T} \times n_{T}}$ are unitary matrices and $\boldsymbol{\Sigma} \in \mathbb{R}^{n_{R} \times n_{T}}$ contains in the main diagonal the singular values of \mathbf{H} and zeros elsewhere. Let the transmit precoding scheme correspond to transmitting $\mathbf{x}=\mathbf{V} \tilde{\mathbf{x}}$ and the receiver shaping scheme correspond to linearly preprocessing the incoming signal \mathbf{y} to form $\tilde{\mathbf{y}}=\mathbf{U}^{\dagger} \mathbf{y}$. Then, the effective channel model becomes

$$
\tilde{\mathbf{y}}=\mathbf{U}^{\dagger} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\dagger} \mathbf{V} \tilde{\mathbf{x}}+\mathbf{U}^{\dagger} \mathbf{w}=\boldsymbol{\Sigma} \tilde{\mathbf{x}}+\tilde{\mathbf{w}}
$$

where $\tilde{\mathbf{w}}=\mathbf{U}^{\dagger} \mathbf{w}$. This corresponds to effectively turning the MIMO channel into $\operatorname{rank}(\mathbf{H})$ parallel SISO subchannels. The noise statistics are invariant to unitary transformations.
(c) (i) $\hat{x}=\mathbf{c}^{\dagger} \mathbf{y}=\mathbf{c}^{\dagger} \mathbf{h} x+\mathbf{c}^{\dagger} \mathbf{w}$. Therefore,

$$
\mathrm{SNR}=\frac{\left|\mathbf{c}^{\dagger} \mathbf{h}\right|^{2}}{E\left[\left|\mathbf{c}^{\dagger} \mathbf{w}\right|^{2}\right]}=\frac{\left|\mathbf{c}^{\dagger} \mathbf{h}\right|^{2}}{\|\mathbf{c}\|^{2}} \leq \frac{\|\mathbf{c}\|^{2}\|\mathbf{h}\|^{2}}{\|\mathbf{c}\|^{2}}
$$

where the last inequality is due to the Cauchy-Schwarz inequality. Equality is achieved when \mathbf{c}_{*} is collinear to \mathbf{h}. This is referred to as matched filter or maximum ratio combining. The achieved SNR is $\|\mathbf{h}\|^{2}$.
(ii) $y=\mathbf{h}^{\dagger} \mathbf{x}+w=\mathbf{h}^{\dagger} \mathbf{s} x+w$. The beamvector corresponds to the optimizing solution of the problem

$$
\max _{\mathbf{s}} \mathrm{SNR}=E\left[\left|\mathbf{h}^{\dagger} \mathbf{s} x\right|^{2}\right]=\left|\mathbf{h}^{\dagger} \mathbf{s}\right|^{2} \quad \text { such that }\|\mathbf{s}\|^{2} \leq p_{0}
$$

By the Cauchy-Schwarz inequality and the power constraint, SNR $\leq\|\mathbf{h}\|^{2}\|\mathbf{s}\|^{2} \leq\|\mathbf{h}\|^{2} p_{0}$. Both equalities are achieved when $\mathbf{s}_{*}=\sqrt{p_{0}} \frac{\mathbf{h}}{\|\mathbf{h}\|}$ and the achieved SNR is $\|\mathbf{h}\|^{2} p_{0}$.

