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Problem 1

(a) By the hints provided during office hours,
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Using now the pair F
{
dn

dtnx(t)
}
= (2πf)nX(f) and the dual to the derivative theorem of the Fourier transform

F{−2πtx(t)} = X ′(f), the inverse Fourier transform to both sides of the last equation yields
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Solving for xrc(t) the result follows.

(b) We first note that
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where the even symmetry of cos(x) has been used and the two straighforward integrations have been evaluated.
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Problem 2

(a) Clearly, h(t) = F−1{H(f)} = δ(t) + a
2 [δ(t− t0) + δ(t+ t0)] and the result follows.

(b) Let x(t) =
∑
n cns(t − nT ). Then y(t) = x(t) ∗ h(t) + w(t) and the result should be explicit based on the

discussion during office hours.

Problem 3

Based on the hints provided during office hours, we have that

(a) C = H+, i.e., the Moore-Penrose pseudoinverse of H.

(b) Let the SVD of the channel matrix be H = UΣV† where U ∈ CnR×nR ,V ∈ CnT×nT are unitary matrices
and Σ ∈ RnR×nT contains in the main diagonal the singular values of H and zeros elsewhere. Let the transmit
precoding scheme correspond to transmitting x = Vx̃ and the receiver shaping scheme correspond to linearly
preprocessing the incoming signal y to form ỹ = U†y. Then, the effective channel model becomes

ỹ = U†UΣV†Vx̃ + U†w = Σx̃ + w̃,

where w̃ = U†w. This corresponds to effectively turning the MIMO channel into rank(H) parallel SISO
subchannels. The noise statistics are invariant to unitary transformations.

(c) (i) x̂ = c†y = c†hx+ c†w. Therefore,
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where the last inequality is due to the Cauchy-Schwarz inequality. Equality is achieved when c∗ is collinear
to h. This is referred to as matched filter or maximum ratio combining. The achieved SNR is ‖h‖2.

(ii) y = h†x + w = h†sx+ w. The beamvector corresponds to the optimizing solution of the problem

max
s

SNR = E[|h†sx|2] = |h†s|2 such that ‖s‖2 ≤ p0.

By the Cauchy-Schwarz inequality and the power constraint, SNR ≤ ‖h‖2‖s‖2 ≤ ‖h‖2p0. Both equali-
ties are achieved when s∗ =

√
p0

h
‖h‖ and the achieved SNR is ‖h‖2p0.


