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Abstract: In this paper, the problem of input signal design with the property that the
estimated model satisfies a given performance level with a prescribed probability is studied.
The aforementioned performance level is associated with a particular application. This problem
is well-known to fall within the class of chance-constrained optimization problems, which are
nonconvex in most cases. Convexification is attempted based on a Markov inequality, leading
to semidefinite programming (SDP) relaxation formulations. As applications, we focus on the
identification of multiple input multiple output (MIMO) wireless communication channel models
for minimum mean square error (MMSE) channel equalization and zero-forcing (ZF) precoding.

1. INTRODUCTION

A basic subproblem in the context of system identification
is that of experiment design. Overviews of this topic over
the last decade can be found in [Gevers, 2005, Hjalmars-
son, 2005, Pronzato, 2008, Hjalmarsson, 2009]. Contribu-
tions include convexification [Jansson and Hjalmarsson,
2005], robust design [Rojas et al., 2007], least-costly de-
sign [Bombois et al., 2006|, and closed versus open loop
experiments [Agiliero and Goodwin, 2007].

An intuitive consideration of the experiment design prob-
lem is that of application-oriented input design. In this
context, we depart from the usual philosophy of designing
the experiment subject to a measure, which quantifies the
distance of the estimated model from the real one. Here,
the experiment is designed to optimize a performance met-
ric associated with the particular application where the es-
timated model will be used, [Gevers and Ljung, 1986, Fors-
sell and Ljung, 2000, Barenthin et al., 2008]. A conceptual
framework for application-oriented experiment design was
outlined in [Hjalmarsson, 2009]. The framework hinges on
introducing a function J, which quantifies the degradation
in performance, when a model that differs from the true
system is used in the design of the application. Suppose
that the performance is deemed acceptable if J < 1/~ for
some parameter 7y, which we will call accuracy. Clearly,
J is dependent on a model G and the set of admissible
models is denoted as Eqgm = {G : J < 1/v}. The system
identification objective is then to select a model in E,gm, -
Therefore, the least-costly experiment is given as
min  Experimental effort
Experiment R (1)
s.t. G € Euim,

where G is the identified model. For the experimental
effort, different measures commonly used are input or
output power, and experimental length.
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In this paper, we assume parametric model identification,
where the parameters are allowed to take complex values.
Thus, our model is represented by a parameter vector

h € C™ and its estimate by h € C". The unknown model
can be estimated either using a deterministic or a Bayesian
estimator. In the first case, we use the minimum variance
unbiased (MVU) estimator and in the second case the
MMSE estimator, [Kay, 1993]. For the MVU case, the
parameter estimator has the distribution:

h ~ CN (h, g \yu), (2)

while for the MMSE case, the posterior parameter distri-
bution is:

hly,u ~CN(h, Iy \ysp)- (3)

In the last two equations, CN (X, Q) stands for the circu-
larly symmetric complex Gaussian distribution with mean
X and covariance Q, Zr mvu [Kay, 1993] and Zy avsk are
the inverse covariance matrices for the MVU and MMSE
estimators, respectively and u € C"7*B |y ¢ C"r*B are
the (complex-valued) input and output data. More details
will be provided in Section 3.

Under (2) and (3), (1) can only be guaranteed with a
prescribed probability. We therefore relax (1) to

min  Experimental effort
Experiment (4)

st. Pa{h€&um}>1-¢
where Px{Y} is the probability of the event Y over
the probability space corresponding to X'. For the MVU
estimator, X corresponds to ﬁ, while for the MMSE
estimator X' corresponds to (fl, h).

From the definition of &,4,, and with the rest of our
assumptions, it is clear that the chance constraint in the

last two problems can be written as Py{J(h,h) > 1/7} <

e, where h = h — h denotes the parameter estimation
error. This constraint is typically nonconvex. Therefore,
further relaxations are required. In [Hjalmarsson, 2009],
the chance constraint is replaced by a convex linear matrix
inequality (LMI) equivalent to the relation &4 C Eugm,



where &;4 corresponds to a confidence ellipsoid for G.
Alternative convex relaxations have been subsequently
suggested in [Rojas et al., 2011]. In this paper, following
[Rojas et al., 2011], the Markov inequality is employed to
approximate the chance constraint in (4), while maintain-
ing at the same time attractive computational properties.
The resulting approximations will be further manipulated
and relaxed to yield semidefinite programming (SDP) re-
laxations of (4).

It is worth noting that the use of SDP relaxations has
already been proposed in [Manchester, 2010] to solve input
design problems in the time domain subject to amplitude
constraints. However, the SDP relaxations employed in
this paper differ from those in [Manchester, 2010], due
to the Kronecker structure of the MIMO communications
problem considered here.

The paper is organized as follows. In Section 2, follow-
ing [Rojas et al., 2011] the Markov inequality is used to
relax the chance constraint of (4). Section 3 introduces
the problem of input design for MIMO communication
systems. In Section 4 we study how to convexify the
Markov bound relaxation derived in Section 2 for the
Kronecker structures present in MIMO communication
systems. Section 5 shows how this relaxation can be used
to perform input design for MMSE channel equalization
and ZF precoding. Some simulation examples are given in
Section 6. Finally, the paper is concluded in Section 7.

Notation: T, # and * denote the transposition, Hermitian

transposition and complex conjugation operators. || - || is
the Euclidean norm of a (complex) vector or a (complex)
matrix. For a matrix A, A;; denotes its (i, j)th element.
Finally, vec(-) denotes the vectorization of a matrix, i.e.,
the stacking of its columns into a single vector.

2. MARKOV BOUND APPROXIMATION

A possible convex approximation of the chance constraint
can be based on the Markov inequality [Papoulis, 1991].
To this end, we assume that J is or can be approximated

by a quadratic form with respect to h:
J(h,h) = h"Z,4, (h)h,

where Z 4, (h) is a Hermitian positive semidefinite matrix
possibly dependent on h. To continue with the convex ap-
proximation, it is necessary to approximate h in Z, 4, (h)

by a previous estimate of h, say h,, turning in this way

~

Toim = Laam(h,) into a deterministic matrix both in the
case of the MVU and the MMSE estimators. Clearly, this
implies that the evolution of the true parameter vector h
with respect to the observation intervals of the system is
such that an approximation of this form approximately
holds.

Using the Markov inequality, the chance constraint can be
approximated as follows:

P (J(8,h) > 1/7} < YBa{h" L4, (B,)h}
= ’yTr[Iadm(flo)EX{HﬁH}]
= T g (o) T3,

where I is ether Zy vy or Zr mmse depending on the
employed estimator. The chance constraint will be satisfied
if N

’YTr[Iadm(ho)Igl] S E.

This condition can also be written as an LMI in Zg, by
using the Schur complement [Boyd et al., 1994]:

N\1/2
n) < £, Mg Tadmile)
v Iadm(ho) / IF
Here, M = M € C"*" is an auxiliary (free) matrix, and

~

Iadm(ho) = Iadm(ﬂo)H/zladm(ho>1/2-

In the following, we will focus on the specific applications
of interest, namely that of MMSE channel equalization and
ZF precoding in MIMO wireless communication systems,
and we will show how Zr is related to the desired input
signal and how (5) can be used to provide semidefinite
approximations of (4).

3. MIMO SYSTEM MODEL

> 0. (5)

We consider a MIMO communication system with ngp
antennas at the transmitter and ngr antennas at the
receiver [Paulraj et al., 2003]. The received signal at time
t is modelled as
y(t) = Hx(t) + n(t)

where x(t) € C"" and y(t) € C"? are the baseband
representations of the transmitted and received signals,
respectively. The impact of background noise and inter-
ference from adjacent communication links is represented
by the additive term n(¢) € C*2. We will further assume
that x(t) and n(t) are both (weakly) stationary signals.
The channel response is modeled by H € C"2*"7  which
is assumed constant during the transmission of one block
of data. In the context of either the MVU or the MMSE
estimators, two different models of the channel will be
considered:

i) A deterministic model.

ii) A stochastic Rayleigh fading model, i.e. vec(H) €
CN(0,R), where, for mathematical tractability, we
will assume that the known covariance matrix R
possesses the Kronecker model used, e.g., in [Liu
et al., 2007, Biguesh et al., 2009]:

R =R} ®Rpg

where Ry € C"T*"T and Rrp € C"E*X"E are the
spatial covariance matrices at the transmitter and
receiver side, respectively. Here, ® denotes the Kro-
necker product [Brewer, 1978] . This model has been
experimentally verified in [Kermoal et al., 2002, Yu
et al., 2004] and in [Gazor and Rad, 2006, Rad and
Gazor, 2008], where it is argued that this Kronecker
structure is reasonable, since the antenna size is
significantly smaller than the distance between the
transmitter and the receiver.

We consider training signals of arbitrary length B, repre-
sented by P € C"7*B whose columns are the transmitted
signal vectors during training. Placing the received vectors
inY =[y(1) ... y(B)] € C"t*B we have:
Y =HP + N,

where N = [n(1) ... n(B)] € C"#*B is the combined
noise and interference matrix.
Defining P=P’'w® I, we can then write

vec(Y) = P vec(H) + vec(N). (6)
As, for example, in [Biguesh et al., 2009, Liu et al., 2007],

we assume that vec(N) € CN(0,S), where the covariance
matrix S also possesses a Kronecker structure:

S =S, ® Sk.



Here, Sqg € CBxB represents the temporal covariance

matrix ' and Sy € C"BX"k represents the received spatial
covariance matrix.

In the case of the MMSE estimator, the channel and noise
statistics will be assumed known to the receiver during
estimation, while in the case of the MVU estimator only
the noise statistics will be considered known. Statistics can
often be achieved by long-term estimation and tracking
[Werner and Jansson, 2009).

For the data transmission phase, we will assume that the
transmit signal {x(t)} is a zero-mean, weakly stationary
process, which is both temporally and spatially white, i.e.,
its spectrum is ®,(w) = A, L

As far as the different ways to estimate the MIMO channel
H are concerned, the MVU channel estimator for the signal
model (6), subject to a deterministic channel (Assumption
i), is given by:

vec(Hyvy) = (PTS™'P) " 'PHS ! vec(Y).
For this estimate, the inverse covariance is
= PSP,

For the case of a stochastic channel model (Assumption ii),
the first and second moments of the posterior parameter
vector are

VEC(ﬁMMSE) = (R_l + f)HS_llg)_lf)HS_
Tinse = (R™ + PSP~

IrMmvu

L vec(Y)

4. SDP RELAXATIONS BASED ON THE MARKOV
BOUND

The experimental effort of interest in our context is as-
sumed to be the input power. Focusing on the case of the
MVU estimator and using (5), the optimization problem
(4) is relaxed as follows:

min Tr [PP7] = Tr [P*P7]
P.M
\1/2
st Te[M] < &, M Ladm (o) >0,

'Y Iadm(ﬁo)H/2 P*SEQTPT ® Sgl

Here, M = MH ¢ Crrnrxninr is an auxiliary (free)

matrix and ﬁo = Vec(ﬁMVU)o, i.e., a previous MVU
estimate of the unknown MIMO channel.
We set Pg = P*SC_QT/ 2, Using an additional free variable
B € R, the last optimization problem takes the form
5B 7
€ TpH
st. Tr[M] < ; Tr [PQSQPQ] <p

I (7)
M Iadm(ho)1/2

Iadm(ho)H/2 PQPg [029] Sél

To achieve a valid semidefinite relaxation of the chance
constraint problem, we have to convexify the last formula-

tion with respect to the decision variable Pq. To this end,
we can use the following identity:

Tr[PoSLPE] = vec! (SqPG) vee(PG) =

> 0.

Te[X(I® Sg)]

1 We set the subscript Q to S to highlight its temporal nature and
the fact that its size is B X B. The matrices with subscript 7" in this
paper share the common characteristic that they are ny X np, while
those with subscript R are ngp X ng.

based on simple properties of the vectorization operator.
Here, X = vec(P) vec” (Ph) = vec(P§)vec” (Pf) €

CnrBxnrB_ Fyurthermore, setting Z = PQPg we have

B
Ziw = (PoP8)i Z PG)im(PE)m
m=1

B
= Z Xt (k=1)B,m+(i—1)B>
m=1

which can be alternatively expressed as

Z= (InT ® 11><B) {(1nT><nT ®IB) © XT} (InT ® 1B><1) .

Here, ® denotes the Hadamard or elementwise matrix
product [Horn and Johnson, 1985]. Combining the pre-
vious results, we can write (7) as:

min
B,X,M,Z N
€ M Iadm<ho)1/2
4 TrM] < £, o >0,
S I'[ ] — v Iad'm(ho)H/2 Z ® S}_%l =

Z= (I, ® Lixp) {(lnTXnT ®Ip)o®
(ITLT & 1B><1) 5
Tr [X (I®S4)] < B, X >0, rank [X] =

X"}

This problem is nonconvex and probably NP-hard. The
usual way to tackle it in the SDP literature is to drop the
rank constraint. The resulting problem is a semidefinite
program and can be efficiently solved by standard convex
optimization packages. Upon obtaining the optimal X,
say X,, the rank-one solution is selected to be equal
to v/A1qi, where \; is the greatest eigenvalue of X,
and q; the corresponding eigenvector. We underline here
that this is an intuitive but otherwise ad hoc solution,
which has been observed to deliver good performance in
practice, in the context of many such rank-one constrained
problems [Manchester, 2010]. In our case, it seems that
this formulation does not always yield a rank-one solution
of good performance, mainly because v/A1q: has to be
de-vectorized in a matrix of size B X np, which will be
equal to Pg , from which the optimal training matrix
P. can be easily extracted. This de-vectorization may
significantly disturb the geometrical characteristics of the
training sequences that will be finally transmitted by each
antenna at the transmitter side.

To avoid the de-vectorization, we may instead use the
following result:

Tr [PoSLPG ] = vee” (Sq) vee (PGPg)
= vect (S5) vec (P5Po)
= |vec” (S5) vec (PgPQ)|
< [|vec (S3) | lve (PGPo)]|
= [vee (Sg) [ Ilvec (211 (8)

where the inequality follows from the Cauchy-Schwarz
inequality and the last equality from the fact that

||vec(PgPQ)H = ||vec(Z)|| = ||Z||r. Here, || - || denotes
the Frobenius norm.

Using (8), the optimization problem (7) can be written as



min
B,Z,M ﬁ

st Tr[M] <

which is a convex problem. Note that the last problem can
be explicitly expressed as a semidefinite program, since the
last inequality constraint on || vec(Z)| can be put in the
form of an LMI using the Schur complement, as follows:

[vec(Z)|| < /|| vee(SD)|| < {Vect(Z) vecZ(Z)} -

where t = 3/ vec(Sg)||-

Upon obtaining the optimal Z, say Z,, the selection of
the training matrix P has to be performed. To this end,
assume that the eigenvalue decomposition (EVD) of Z, is
Uz Dz U¥ | where Uy, € C"7*"7T is its modal matrix

and Dy € R"™*"T a diagonal matrix containing its
eigenvalues in decreasing order. Assume also that the
EVD of Sg is UQDQUg, where Ug € CB*B s its
modal matrix and Doy € REXF is a diagonal matrix
containing its eigenvalues in order that will be determined
in the following. We denote as Up-Dp-VE, the singular
value decomposition (SVD) of P*. Since Z = PQPg =
P*SéTPH, it is clear that there is an infinite number of
Pg’s which can produce Z,, since if Py, is such a choice

then P, W is also a valid choice, where W € CB*5 is
an arbitrary unitary matrix. This argument shows that
our main concern with respect to the selection of P is the
formation of Z,. An immediate and intuitive way to make
such a choice is to select Up- = Uy, and Vp« = Ug. This
implies that D p~ must satisfy the following relationship:

Dy =Dp-D;'Dp-

ie, (Dp«(i,i))*> = Dy, (i,i)Dg(i,i),i = 1,...,np. Ad-
ditionally, the ordering of the eigenvalues Dg(i,4),i =
1,...,n7, should be such that

nr

Tr[P*P”] =) "(Dp-(i,i))?

i=1
is minimized. By our assumptions and using Lemma 1 in
[Katselis et al., 2007], the diagonal entries of D¢ should be
arranged in ascending order. The above choices determine
the optimal P*, i.e., the optimal P, say P,.

We may now turn our interest to the case of the MMSE
channel estimator. In this case, it is immediate to see that
the corresponding semidefinite program will be as follows:
Vi

s.t. Tr[M] < M Zaam (ho)'/?

Ivec(2)|| < B/|| vec(Se)ll, Z=12" >0,

and the choice of the optimal P will be exactly the same
as in the case of the MVU estimator.

Remarks:

(1) The proposed choice of P in both cases is one possible
solution among infinite others that achieve Z,. Its
optimality is with respect to this aspect. However, in
strict mathematical sense this choice is ad hoc to the
same degree as the usual best rank-one approximation
of X, in the SDP relaxation framework. This is due

g
£ Vi >0
o vy Iadm(ho)H/2 R_l + Z (9 SRI

to the numerical nature of the presented approach.
Nevertheless, the proposed P is intuitive in the sense
that it resembles many analytically derived optimal
training matrices in the MIMO channel context, e.g.,
[Kotecha and Sayeed, 2004, Wong and Park, 2004,
Biguesh and Gershman, 2006, Liu et al., 2007, Kat-
selis et al., 2007, Bjornson and Ottersten, 2010].

(2) In the case of the MMSE estimator, the information
of R is indirectly encoded in the proposed training
matrix P through the eigenvectors and the eigenval-
ues of the corresponding Z,.

(3) A thorough theoretical analysis on the distance of the
obtained optimal value via the SDP relaxation from
the true optimal value, i.e., a quantification of error
is difficult due to the nature of the chance constraint.
Such an analysis is a future theoretical direction to
be pursued. Nevertheless, similar SDP relaxations to
various optimization problems have been shown to
deliver solutions approximately 2/7 to 0.87 away from
the optimal one [Manchester, 2010].

5. APPLICATIONS: MMSE CHANNEL
EQUALIZATION AND ZF PRECODING

In this section we will first consider the problem of es-
timating a transmitted signal sequence {x(t)} from the
corresponding received signal sequence {y(¢)}. Among a
wide range of methods that are available [Paulraj et al.,
2003, Verdu, 1998], we will consider the MMSE equalizer
and for mathematical tractability we will approximate it
by the non-causal Wiener filter. Note that for reasonably
long block lengths, the MMSE estimate becomes similar
to the non-causal Wiener filter [Haykin, 2001]. Thus, the
optimal training design based on the non-causal Wiener
filter should also provide good performance, when using
an MMSE equalizer.

Let us, first, assume that H is available. In this ideal case,
and with the transmitted signal being weakly stationary
with spectrum @, the optimal estimate of the transmitted
signal x(¢) from the received observations of y(¢) can be
obtained according to

x(t; H) = F(¢; H)y(t)
where ¢ is the unit time shift operator, i.e., ¢gx(t) = x(t+1),
and the non-causal Wiener filter F(e/“; H) is given by
F(e/*;H) = &, (w)®, " (w)
=&, (wHIH®, (WH? +®,(w)] "
Here, ®,,(w) = ®,(w)H” denotes the cross-spectrum
between x(t) and y(t), and
¢, (w) = H®, (w)H” + @, (w)
is the spectral density of y(¢). Using our assumption that
P, (w) = A1, we obtain
F(e/*; H) = HY (HHY 4+ ®,,(w)/)\,) "
A simple measure of the loss of performance is the
total MSE of the difference x(¢t;H + H) — x(t;H) =
A(q; H,H)y(t), where A(¢;H,H) £ F(¢;H + H) —
F(q;H). In view of this, we will use the channel equal-
ization (CE) performance measure
Jop(H,H) £ E{[A(¢; H, H)y(1)]" [A(¢; H, H)y(¢)]}.

Note that Jog(H, H) may be viewed as the excess MSE
due to the estimation errors, of the equalized signal,
compared to the case of a perfectly known channel.
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Fig. 1. np = 4,ng = 2, B = 6, = 0.01 and data trans-
mission SNR = 15 dB: MMSE Channel Equalization
based on the MMSE estimator.

Apart from the receiver side channel equalization, another
example of how to apply the proposed application-oriented
design is the point-to-point ZF precoding, also known
as channel inversion [Hochwald et al., 2005], where the
channel estimate is fed back to the transmitter and its
(pseudo-)inverse is used as a linear precoder. The data
transmission is described by:
y(t) = HBx(t) + v(?)

where the precoder B = HT, i.e., B = H# (HHY)~! if we
limit ourselves to the practically relevant case ny = ng
and assume that H is full rank.

Under these assumptions, we define
y(t;H) — y(t; H) = HHx(t) + v — (HH x(t) + v)
= (HH' - HH' — I)x(t) ~ —HH'x(t).

The cost function in tllis case 1s R
Jor(HLH) £ B{[y(t: H) — y(&: H)|" [yt H) — y(; H)]}.

Lemma 1. Assuming high signal-to-noise ratio (SNR) dur-
ing data transmission, Zag, = Al ® (HHH)_1 for
nr > ng in the MMSE channel equalization case and
Totm = \HY (HH?) ?H® 1 for np = ng in the ZF
precoding case.

The proof of this result is long, hence it is omitted due to
reasons of space.

6. NUMERICAL EXAMPLES

The purpose of this section is to examine the performance
of optimal training sequence designs, and to compare them
with other methods. In all figures, fair comparison among
the presented schemes is ensured via training energy
equalization. Additionally, the matrices R, Rg,Sq,Sr
follow the exponential model, that is, they are built
according to

(R)'L,j = Tj_iv ] Z 7:7
where r is the (complex) normalized correlation coeffi-
cient with magnitude p £ |r| < 1. We choose to exam-
ine the most intriguing case of |r| for all the presented
schemes. Therefore, in all plots |r| = 0.9 for all matrices
Rr,RR,Sg,Sg. Additionally, the transmit SNR during

data transmission is chosen to be 15 dB. High SNR ex-
pressions given by Lemma 1 are therefore used for optimal

nT:4’ nR:4, B=6, SNR=15 dB, n=0.01

MVU
== SDP

20 s 10 s 0
Y (dB)

Fig. 2. np = 4,ng = 4,B = 6,u = 0.01 and data
transmission SNR = 15 dB: ZF precoding based on
the MVU estimator.
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Fig. 3. np = 4,ng = 4,B = 6,40 = 0.01 and data
transmission SNR = 15 dB: ZF precoding based on
the MMSE estimator.

training sequence designs. We assume that the channel
changes from block to block according to the relationship
H, = H,_, + pE;, where E; is built as H and it is
completely independent from H;_;. Jog is averaged over
multiple realizations of H; with depth equal to 5. For
initialization, the “SDP” scheme in Figs. 1 and 3 uses the
Optimal MMSE estimate derived in [Bjérnson and Otter-
sten, 2010] and the “SDP” scheme in Fig. 2 the optimal
Gauss-Markov estimate presented in [Katselis et al., 2008].

In Fig. 1, E{Jcg} versus the accuracy ~ is presented for
two different schemes. The “Optimal MMSE” scheme is
presented in [Bjornson and Ottersten, 2010], and corre-
sponds to the optimal training for the MMSE estimator
with respect to the channel estimation error. This scheme
corresponds to the state of the art in communication
systems at the moment. The “SDP” scheme is the one
presented in this paper for the MMSE estimator. For
the Jog performance metric, the application-oriented de-
sign demonstrates approximately the same performance
with the the “Optimal MMSE” scheme. This is due to
the fact that Zp = T for this particular application.
The application-oriented design demonstrates consider-
ably better performance for all y-values in the case of the
ZF precoding application, as we can see in Fig. 3. In this
case, I #

As far as Fig. 2 is concerned, the scheme “MVU” is the
MVU estimator with optimal training for channel estima-
tion purposes. This scheme is usually used in communi-
cation systems and has been presented in [Katselis et al.,



2008|. The scheme “SDP” is the SDP relaxation solution
for the MVU estimator presented in this paper. We observe
that the application-oriented design demonstrates again
better performance for all y-values in the case of the ZF
precoding application.

7. CONCLUSIONS

Semidefinite programming relaxations for the chance con-
straint input design problem based on the Markov bound
have been presented in this paper. The derived SDP
formulations were used in the context of MMSE chan-
nel equalization and ZF precoding in MIMO communi-
cation systems. Numerical results have verified that the
application-oriented input design provides a powerful ex-
periment design framework, when combined with SDP
relaxation tools.
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