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Abstract: Robust optimal experiment design for dynamic system identification is cast as a min-
max optimization problem, which is infinite-dimensional. If the input spectrum is discretized
(either by considering a Riemmann approximation, or by restricting it to the span of a finite
dimensional linear space), this problem falls within the class of semi-infinite convex programs.
One approach to this optimization problem of infinite constraints is the so called “scenario
approach”, which is based on a probabilistic description of the uncertainty to deliver a finite
program that attempts to approximate the optimal solution with a prescribed probability. In
this paper, we propose as an alternative an exchange algorithm based on some recent advances
in the field of semi-infinite programming to tackle the same problem. This method is compared
with the scenario approach both from the aspects of accuracy and computational efficiency.
Furthermore, the comparison includes the MATLAB semi-infinite solver fseminf to provide a
general palette of methods approximating the robust optimal design problem.

1. INTRODUCTION

The goal of experiment design is to tune the experimental
conditions in such a way that all the available information
about the unknown system is teased from the experimen-
tal data. The reason for this is that a good design can
have significant effects in the accuracy of the estimated
system model. This has motivated substantial research on
experiment design during the last century. Early research
in the statistics literature includes [Cox, 1958, Fedorov,
1972, Wald, 1943, Whittle, 1973, Wynn, 1972], and, in the
engineering literature, [Gagliardi, 1967, Goodwin et al.,
1973, Goodwin and Payne, 1977, Hildebrand and Gevers,
2003b, Levadi, 1966, Mehra, 1974, Zarrop, 1979]. More re-
cent surveys are contained in [Gevers, 2005, Hjalmarsson,
2005, Pronzato, 2008] where many additional references
can be found.

In dynamical systems, the model is, typically, nonlinearly
parameterized. This implies that the Fisher information
matrix (FIM) [Goodwin and Payne, 1977], typically used
as the basis for experiment design, depends, inter alia, on
the true system parameters, i.e., the very thing that the
experiment is aimed at finding.

Robust experiment design includes substantial work on
iterative design [Gevers, 2005, Hjalmarsson, 2005], and a
sub-optimal min-max solution for a one parameter prob-
lem in [Walter and Pronzato, 1997]. Also, recent publi-
cations refer to the idea of min-max optimal experiment
design [Gevers and Bombois, 2006, Mårtensson and Hjal-
marsson, 2006, Rojas et al., 2007, Welsh and Rojas, 2009].
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In the robust experiment design literature, uncertainty
is usually described as a continuous set. This yields an
infinite number of constraints, i.e., a semi-infinite pro-
gramming (SIP) problem, known to be difficult to solve
and possibly NP-hard [Ben-Tal and Nemirovski, 1998].
Several review papers cover the topic of semi-infinite pro-
gramming [Hettich and Kortanek, 1993, López and Still,
2006], where they present alternative methods to tackle
such problems in a numerical fashion. In [Calafiore and
Campi, 2005, 2006] the “scenario approach” is presented.
The advantage of this method is that solvability can be
obtained through random sampling of constraints pro-
vided that a probabilistic relaxation of the worst case
robust paradigm is accepted. The probabilistic relaxation
amounts to being content with robustness against the large
majority of situations rather than against all situations. In
the scenario approach the number of situations is under the
control of the designer and can be made arbitrarily close to
the set of ‘all’ situations modulo, of course, computational
limitations. Clearly, the scenario approach corresponds to
a probabilistic way of converting a semi-infinite program
into a finite program and then applying well-established
finite nonlinear programming tools to find an approximate
solution of the original problem.

In this paper, together with the scenario approach, we
consider the class of exchange methods presented in [Het-
tich and Kortanek, 1993]. We choose not to consider dis-
cretization methods, which have the advantage to work
with finite subsets of the uncertainty set, because they are
computationally costly and the cost per iteration increases
dramatically as the size of these finite subsets grows [Het-
tich and Kortanek, 1993]. Our main proposition is an
exchange algorithm based on results presented in [Zhang



et al., 2010]. The approaches considered in this paper
are compared with the MATLAB Optimization Toolbox’s
semi-infinite solver fseminf, both from the aspects of accu-
racy and computational efficiency. In this sense, this paper
offers a wide palette of methods to tackle the min-max
robust experiment design problem.

The paper is structured as follows. Section 2 presents
an overview of the problem of robust experiment design.
In Section 3, the scenario approach and an exchange
algorithm for semi-infinite programming are introduced,
in the context of our problem. Section 4 summarizes some
theoretical properties of the exchange algorithm. Section 5
illustrates and compares these two methods (together
with the MATLAB fseminf solver) via some simulation
examples. Finally, Section 6 concludes the paper.

2. ROBUST EXPERIMENT DESIGN

2.1 The FIM

In the context of parametric estimation, we usually employ
measures related to the estimator’s accuracy so as to
mathematically assess the objective of the experiment
design. However, the aforementioned accuracy is not only
dependent on the experimental conditions, but also on
the form of the estimator. Therefore, it is desirable to
employ an “estimator-independent” measure. To this end,
we assume that the employed estimator is efficient in the
sense that its error covariance achieves the Cramér-Rao
lower bound [Goodwin and Payne, 1977], i.e, cov θ̂ = M−1,
where M is the FIM [Casella and Berger, 2002, Silvey,
1970] and θ̂ the parameter estimator.

Consider a single-input single-output (SISO) linear con-
tinuous time system, with input u(t) and output y(t), of
the form

y(t) = G(p)u(t) +H(p)w(t)
where G and H are stable rational transfer functions, p
is the time derivative operator, H is minimum phase and
normalized as H(∞) = 1, and w(t) is zero mean Gaussian
white noise of intensity σ2. We assume open loop operation
of the system, i.e., that u(t) and w(t) are independent. We
let θ := [ρT ηT σ2]T where ρ denotes the parameters in G
and η denotes the parameters in H. Therefore, we assume
that G, H and σ2 are independently parameterized.

Assume that the sampling period is h, and that we sample
the output y(t) with the same sampling period. Using
N samples {u(kh), y(kh)}Nk=1 for estimation purposes, the
FIM M is given by [Goodwin and Payne, 1977]

M =
[
M1 0
0 M2

]
where M1 is the part of the information matrix related to
ρ, and M2 to the rest of the parameters. Clearly, M2 is
independent of the input. Assuming that N is large, we
define [Goodwin and Payne, 1977, Walter and Pronzato,
1997],

M(θ,Φu) := lim
N→∞

1

Nh
M1σ

2

=

∫ ∞
0

M̃(θ, ω)Φu(ω)dω. (1)

where

M̃(θ, ω) := Re

{
∂G(jω)

∂ρ
|H(jω)|−2

[
∂G(jω)

∂ρ

]H}
,

and Φu is the continuous time input spectrum. We choose
to work with M(θ,Φu), rather than M , for convenience
purposes.

2.2 Criteria for Nominal Experiment Design

To proceed with the task of experiment design, we need to
employ some sort of scalar measure of M . In the nominal
case, i.e., when a predefined estimator of θ is used, several
measures of the “size” of M have been proposed. Some
examples include

(i) D - optimality [Goodwin and Payne, 1977]
Jd(θ,Φu) := [detM(θ,Φu)]−1 .

(ii) Experiment design for robust control [Hildebrand and
Gevers, 2003a,b, Hjalmarsson, 2005].

Jrc(θ,Φu) := sup
ω
g(θ, ω)HM

−1
g(θ, ω)

where g is a frequency dependent vector related to
the ν-gap [Hildebrand and Gevers, 2003a,b].

(iii) and finallyA-optimality (trM(θ,Φu)−1), L-optimality
(trWM(θ,Φu)−1, for someW ≥ 0) and E-optimality(
λmax(M(θ,Φu)−1)

)
[Kiefer, 1974].

The experimental design goal is to choose Φu to minimize
one of the above criteria. Since most criteria are convex
in Φu, we will consider that the chosen criterion has this
desirable property in the following.

2.3 Min-Max Robust Design

We pursue a min-max robust design on the basis that the
parameters can take any value in a compact set Θ. A set
of admissible input signals is defined and a constraint on
the input energy is imposed. Here, we define the constraint
as 1

S(R+
0 ) :=

{
Φu : R→ R+

0 : Φu is even and∫ ∞
−∞

Φu(ω)dω = 1

}
.

The min-max robust optimal input spectral density, Φoptu ,
is then chosen as

Φoptu = arg min
Φu∈S(R+

0 )
sup
θ∈Θ

J(θ,M(θ,Φu)) (2)

where J is an appropriate scalar differentiable measure
of M . We assume that Φoptu exists and is unique; see
[Rojas et al., 2007]. Notice also that we allow J to depend
explicitly on θ.

2.4 Discrete Approximation to the Optimal Input

The min-max optimization problem (2) is clearly infinite
dimensional. For its solution, we use discretization of the
design space. First we restrict the positive support of Φu
to a compact interval, say K := [ω, ω] ⊂ R+

0 , hence Φu ∈
S(K). Next, we approximate the integral in equation (1)
by a Riemann sum. Specifically, we choose a grid of d+ 1
1 In general, given a set X ⊆ R0, we will denote by S(X) the set
of all even generalized functions Φu on R [Rudin, 1973] such that
Φu is the derivative of some probability distribution function on R,
and supp Φu ⊆ X ∪ (−X), where supp Φu is the support of Φu (i.e.
roughly speaking, S(X) is the set of all even (generalized) probability
density functions on X ∪ (−X)).



points ωm ∈ [ω, ω] for m = 0, . . . , d such that ω0 = ω,
ωd = ω. Then

M(θ,Φu) :=

∫ ω

ω

M̃(θ, ω)Φu(ω)dω

≈
d−1∑
n=0

M̃(θ, ωn)Φu(ωn)(ωn+1 − ωn)

=

d−1∑
n=0

M̃(θ, ωn)En

where En := Φu(ωn)(ωn+1 − ωn). We can now state
the following discrete semi-infinite convex programming
approximation to (2):

min
t∈R, E∈Rd

t

s.t. J

(
θ,

d−1∑
n=0

M̃(θ, ωn)En

)
≤ t, ∀θ ∈ Θ

d−1∑
n=0

En = 1 (3)

En ≥ 0, n = 0, . . . , d− 1.

where ‘s.t.’ stands for ‘subject to’. In the sequel, we call
this problem robust SIP (RSIP (Θ)).

3. COMPUTATIONAL APPROACHES TO ROBUST
EXPERIMENT DESIGN

3.1 The Scenario Approach

The scenario approach presumes a probabilistic descrip-
tion of uncertainty, that is, the uncertainty is characterized
through a set ∆ describing the set of admissible situations,
and a probability distribution Pr over ∆.

As shown in Section 2.4, the min-max optimization prob-
lem, when converted to a robust convex optimization pro-
gram yields an unwieldy number of constraints, c.f., (3).
The scenario approach involves selecting a small number
of these constraints to include in the optimization prob-
lem. Therefore by extracting, at random, N instances or
“scenarios” of the uncertainty parameter δ according to
some probability Pr we consider only the corresponding
constraints in the scenario optimization problem.

Consider the following general Robust Convex Program:

RCP :
min
γ∈Rd

cT γ

s.t. fδ(γ) ≤ 0, δ ∈ ∆.

where fδ : Rd → R is convex for every δ ∈ ∆. The scenario-
based approximation is described as Algorithm 1.

Algorithm 1 Scenario Approach [Calafiore and Campi,
2006]
1: Generate N independent identically distributed sam-

ples δ(1), . . . , δ(N) ∈ ∆, according to Pr
2: Solve the scenario convex program

SCPN :
min
γ∈Rd

cT γ

s.t. fδ(i)(γ) ≤ 0, i = 1, . . . , N.
(4)

It can be seen from (4) (below) that it is a standard finite
dimensional convex optimization problem with a finite
number of constraints.

3.2 An Exchange Algorithm

To present this approach, we make first some introductory
comments on SIP problems. A convex SIP problem is
an optimization problem with a finite number of decision
variables, but with a feasibility set described by an infinite
number of constraints. Its general form is given by

SIP (Θ) :
min
γ

f(γ)

s.t. g(γ, θ) ≤ 0, ∀θ ∈ Θ.
(5)

where f, g(·, θ) : Rn → R are continuous convex functions
(for a fixed θ) and Θ is a given nonempty compact set.

There are several algorithms in the literature for solving
the SIP (5); see e.g. the survey [Hettich and Kortanek,
1993]. An important class is that of the exchange algo-
rithms. These methods replace (5) by a sequence of finite
dimensional convex programs, whose constraints are of
the form g(γ, θ) ≤ 0, where θ ranges over a finite subset
of Θ. Each program of this sequence is built solving the
previous convex program and then adding some “violated”
constraints of (5) (i.e., those for which g(x∗, θ) > 0, where
x∗ is the optimal solution of the previous convex program
of the sequence).

Most of the existing exchange algorithms devote most of
their computational effort in solving the so-called “aux-
iliary problem”, i.e., in determining the most violated
constraint at each iteration. The proposed exchange algo-
rithm, due to Zhang et al. [2010], maintains only the active
constraints, i.e., those corresponding to positive Lagrange
multipliers, at each step, and no global search for the most
violated constraint is needed.

In order to explain the proposed algorithm, denote by Ψ
a given finite subset of Θ, say, Ψ = {θ1, θ2, . . . , θm}. We
associate with this set the following finitely constrained
convex problem:

min
t∈R, E∈Rd

t

s.t. J

(
θi,

d−1∑
n=0

M̃(θi, ωn)En

)
≤ t, i = 1, . . . ,m

d−1∑
n=0

En = 1

En ≥ 0, n = 0, . . . , d− 1.

This problem is denoted as RSIP (Ψ). Let θ0 be an arbi-
trary element of Θ (e.g., its centroid, if Θ is a convex poly-
tope). For this problem, a feasible solution (t∗, E∗) ∈ Rd+1

is optimal if and only if there exist Lagrange multipliers
µ∗ ∈ Rm+ , λ∗ ∈ Rd+, ν∗ ∈ R such that (t∗, E∗, µ∗, λ∗, ν∗)
satisfy the Karush-Kuhn-Tucker (KKT) conditions [Boyd
and Vandenberghe, 2003] (if Slater’s condition is satisfied;
see Section 4 below). We are now ready to give the steps
of the proposed exchange algorithm.



Algorithm 2 Exchange Algorithm [Zhang et al., 2010]
Require: θ0, a finite set Ψ0 = {θ0

1, . . . , θ
0
m0
} ⊂ Θ such

that θ0 ∈ Ψ0, and a small number ε > 0
1: k ← 0
2: Solve RSIP (Ψ0) to obtain an optimum (t0, E0)
3: loop
4: Find a θknew ∈ Θ such that

J

(
θknew,

d−1∑
n=0

M̃(θknew, ωn)Ekn

)
− tk > ε.

5: if θknew does not exist then
6: STOP
7: Ψk+1 ← Ψk ∪ {θknew}
8: Solve RSIP (Ψk+1) to obtain an optimum

(tk+1, Ek+1) and Lagrange multipliers
(µk+1, λk+1, νk+1)

9: Ψk+1 ← {θi ∈ Ψk+1|θi = θ0 or µk+1
i > 0}

10: k ← k + 1

The set Ψ0, in Step 1, can be chosen, for example, as a
uniform grid on Θ. In order to carry out Step 4, following
[Zhang et al., 2010], we can choose a set of refined grids
of Θ, T1 ⊂ T2 ⊂ · · · ⊂ Tl, where l > 0 is a predetermined
value, and perform the following sub-steps:

Algorithm 3 Steps 4-7 of Algorithm 2
1: r ← 1
2: loop
3: if r > l then
4: STOP
5: if there is a θ̄ ∈ Tr such that

J
(
θ̄,
∑d−1
n=0 M̃(θ, ωn)Ekn

)
− tk > ε then

6: θknew ← θ̄
7: Ψk+1 ← Ψk ∪ {θknew}
8: Go to Step 8 of Algorithm 2
9: if maxθ∈Tr

J
(
θ,
∑d−1
n=0 M̃(θ, ωn)Ekn

)
− tk < −ε

then
10: r ← r + 1
11: else
12: Let θ̃ ∈ Tr be such that∣∣∣J (θ̃,∑d−1

n=0 M̃(θ̃, ωn)Ekn

)
− tk

∣∣∣ < ε.
13: Apply Newton’s method to maxθ∈Θ

J
(
θ,
∑d−1
n=0 M̃(θ, ωn)Ekn

)
, starting from

θ = θ̃
14: if Newton’s method delivers a θ̂ ∈ Θ such that

J
(
θ̂,
∑d−1
n=0 M̃(θ̂, ωn)Ekn

)
− tk > ε then

15: θknew ← θ̂
16: Ψk+1 ← Ψk ∪ {θknew}
17: Go to Step 8 of Algorithm 2
18: r ← r + 1

Remark 1. The Lagrange multipliers µ∗, λ∗, ν∗ are usu-
ally provided by standard convex optimization packages,
because they typically rely on primal-dual interior point
algorithms. This means that it is not necessary to solve
the KKT conditions explicitly in order to obtain such
quantities for Step 8 of Algorithm 2. 2

4. THEORETICAL PROPERTIES OF THE
EXCHANGE METHOD

According to Zhang et al. [2010], under certain conditions,
Algorithm 2 terminates in a finite number of iterations, if
Ψ1 \ {θ0} 6= ∅. Furthermore, if the algorithm terminates,
and we denote its result as E∗ε , then every accumulation
point of E∗ε as ε → 0 is an optimal solution of RSIP (Θ).
These conclusions suggest that the choice of a ε should
give a good approximation to the RSIP (Θ), which is the
problem we are actually interested in.

A set of conditions under which these results hold are:

• J : Θ × Rn×n → R+
0 ∪ {+∞} is continuous, strictly

convex, and such that J(θ,M) < ∞ for all non-
singular M , and that J(θ, ·) is continuously differ-
entiable for all θ ∈ Θ.
• M is non-singular whenever En > 0 for all n =

0, . . . , d− 1.

The first condition is quite mild, and is typically satisfied
by most experiment design criteria. The second condition,
on the other hand, is satisfied for most rational model
structures, since it states that a persistently exciting signal
should imply model identifiability [Ljung, 1999].

To verify that the stated conditions imply those required
in [Zhang et al., 2010], first notice that RSIP (Θ) can be
written as (5) by replacing E0 with 1−

∑d−1
n=1En, thus re-

ducing E ∈ Rd to Ẽ = (E1, . . . , Ed−1) ∈ Rd−1, and where
f(t, E) = t and g combines the two groups of inequality
constraints in RSIP (Θ): J(θ,

∑d−1
n=0 M̃(θ, ωn)En) − t ≤ 0

for all θ ∈ Θ, and −En ≤ 0 for n = 0, . . . , d − 1.
This means that Θ has to be replaced by a larger set
Θ ⊃ Θ containing d additional points, in order to fit the
nonnegativity constraints into the structure of (5).

The algorithm in [Zhang et al., 2010] requires a set Ω0

such that f is level bounded in SIP (Ω0). In our case,
Ω0 = {θ0} ∪ (Θ \ Θ) (i.e., θ0 and the nonnegativity
assumptions on En should be included in Ω0) plays such
role, as it can be easily verified for our assumptions.

Most of the conditions in Assumption A of [Zhang et al.,
2010] hold. In particular, Assumptions A(i) (convexity and
continuous differentiability of f) and A(iv) (level bound-
edness of f in the feasibility set of SIP (Ω) can be easily
verified. Assumption A(iii) (Slater’s condition) also holds,
since Slater’s condition involves the existence of a feasible
solution (t, E) which satisfies all inequality constraints
with a strict sign [Boyd and Vandenberghe, 2003], and for
such pair we may take En = 1/d (n = 0, . . . , d − 1) and
t = 1 + maxi=1,...,m J(θi,

∑d−1
n=0 M̃(θi, ωn)En).

Assumption A(ii) in [Zhang et al., 2010] does not directly
hold, but it can be relaxed to the requirement that
g(·, θ) is convex for all θ ∈ Θ and that ∇xg(x, θ) exists
and is continuous on Rd−1 × Θk, k = 1, . . . ,K, where
{Θ1, . . . ,ΘK} is a finite partition of Θ. The proofs in
[Zhang et al., 2010] continue to hold without modifications
under this relaxed assumption A(ii), which applies to our
case.

In order to apply Theorem 3.1 in [Zhang et al., 2010],
condition (ii) needs to be relaxed to requiring only that



J(θ, ·) is strictly convex 2 for every θ ∈ Θ. Unfortunately,
for these relaxed assumptions the proofs of Lemma 3.1
and Theorem 3.1 of [Zhang et al., 2010] need further
modifications, and we cannot develop these changes here,
for reasons of space.

On the other hand, Theorem 3.2(a) of [Zhang et al., 2010]
can be directly applied to our setup. This establishes the
conclusions at the beginning of this section.

5. NUMERICAL EXAMPLES

In this section, an example is presented to demonstrate the
numerical aspects of the presented methods. This example
utilizes a one parameter first order system, which can be
solved in principle using linear programming (if the robust
experiment design problem is approximated by a finite
dimensional program).

Consider a model given by H(s) = 1 and

G(s) =
1

s/θ + 1
,

where it is assumed that θ ∈ [0.1, 10]. For this model
structure, the ‘single frequency’ normalized information
matrix is given by

M̃(θ, ω) =
ω2/θ4

(ω2/θ2 + 1)2
.

Consider a criterion of the form

J(θ,M(θ,Φu)) =
1

θ2M(θ,Φu)
.

The reason for multiplying M by θ2 is that M
−1

is a
variance measure and thus [θ2M ]−1 gives relative (mean
square) errors.

This robust experiment design problem can be solved by
discretizing the interval for θ, and rewriting the problem
as a linear program [Rojas et al., 2007]. This approach is
similar to the one described in Subsection 3.1, except for
the fact that in [Rojas et al., 2007] a deterministic (in fact,
uniform) sampling of the constraints has been used.

We consider an interval [0.1, 10] for the support of Φu
(which, according to [Rojas et al., 2007], actually contains
the optimal spectrum), d = 30 and N = 7864. The choice
of this value for the number of scenarios is motivated
in [Welsh and Rojas, 2009]. For this value of N , we also
use a distribution Pr, which is uniform on ln θ. To set
up a fair comparison with the MATLAB semi-infinite
solver fseminf, we use the same number of constraints.
We achieve this by a uniform discretization of [0.1, 10]
with a spacing equal to (10 − 0.1)/N and by neglecting
one of the generated discrete θ’s, e.g., the last one. We
maintain the “options” structure of this solver to its default
values. Finally, for the exchange algorithm we choose
Ψ0 as a uniform grid on [0.1, 10] with spacing equal to
(10 − 0.1)/50. Solving RSIP (Ψ0), we obtain the initial
solution (t0, E0). We set l = 4. The set of refined grids
T1 ⊂ T2 ⊂ T3 ⊂ T4 is generated via gridding on [0.1, 10],
with constant spacing equal to 1/10l, l = 1, 2, 3, 4. Instead
of solving the auxiliary problem using Newton’s method,
we employ a more direct technique similar to ideas used
in discretization methods for semi-infinite programming
problems [Hettich and Kortanek, 1993]: Upon obtaining
2 In [Zhang et al., 2010, Sections 4.2-4.3], Theorem 3.1 is applied,
assuming erroneously that the constraint functions are strictly con-
vex.
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Fig. 1. Values of E as a function of θ.

a θ̃ ∈ Tr such that
∣∣∣J (θ̃,∑d−1

n=0 M̃(θ̃, ωn)Ekn

)
− tk

∣∣∣ < ε,

we search for arg maxθ∈Θ J
(
θ,
∑d−1
n=0 M̃(θ, ωn)Ekn

)
in a

refined grid around θ̃. The end points of this grid are
selected to be T previousr (θ̃) and Tnextr (θ̃), i.e., the points
of Tr immediately before and after θ̃, while the spacing is
assumed to be

(
Tnextr (θ̃)− T previousr (θ̃)

)
/1000.

The three methods give the spectrums presented in Fig-
ure 1. We observe that the Scenario approach and the Ex-
change Algorithm give almost identical spectra. This can
also be verified in Figure 2, where the cost J(θ,M(θ,Φoptu ))
as a function of θ is demonstrated for all methods, while
in every case, we also give the optimal cost produced by
SeDuMi.

The methods have been solved using CVX with the Se-
DuMi as solver in a PC with Intel(R) Core(TM) 2 CPU
at 1.83 GHz and 1 Gb of RAM. The Scenario Approach
terminated in 121.453 seconds, fseminf in 74.093 seconds
and the Exchange Algorithm in 48.5 seconds. It can be
noted that if Newton’s method is employed in the exchange
algorithm, then we should get an ever better time to
termination [Zhang et al., 2010]. We choose to implement
a grid search for the solution of the auxiliary problem due
to its direct implementation.

6. CONCLUSIONS

In this paper, the problem of robust experiment design
based on semi-infinite programming techniques was inves-
tigated. The so-called “scenario” approach was presented,
while a new exchange algorithm was proposed for the
solution of the same problem. These two methods were
compared numerically with the MATLAB semi-infinite
solver fseminf. The comparison for a simple one param-
eter example showed that the scenario approach is more
accurate than fseminf, but less computationally efficient.
The exchange algorithm seems to provide an accuracy
similar to the scenario approach, but with a much better
computationally efficiency. This comparison verifies that
the exchange techniques should be further investigated in
the context of the robust experiment design problem.
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