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Abstract—In this article, we analyze the SPICE method de-
veloped in [1], and establish its connections with other standard
sparse estimation methods such as the Lasso and the LAD-Lasso.
This result positions SPICE as a computationally efficient tech-
nique for the calculation of Lasso-type estimators. Conversely,
this connection is very useful for establishing the asymptotic
properties of SPICE under several problem scenarios and for
suggesting suitable modifications in cases where the naive version
of SPICE would not work.

Index Terms—Irregular sampling, sparse parameter estimation,
spectral analysis.

I. INTRODUCTION

S PECTRAL line estimation, or the problemof estimating the
amplitudes and frequencies of a signal composed of a sum

of sinusoids contaminated by Gaussian white noise, is a ubiqui-
tous and well studied area in the field of signal processing [2].
Manyclasses ofmethods havebeendevised to solve this problem
under several different scenarios like, e.g., uniformly/non-
uniformly spaced samples, a priori known/unknown number
of sinusoids, homoscedastic/heteroscedastic (constant/varying
variance) samples, parametric/non-parametric model-based,
and so on [2]–[4].
Recently, SPICE (SemiParametric/SParse Iterative Covari-

ance-based Estimator), a new technique for spectral line estima-
tion inspired by ideas from sparse estimation, has been proposed
in [1]. This method is capable of handling irregularly sampled
data. Similarly, a version of SPICE has also been developed for
array signal processing [5], a mathematically almost equivalent
problem ([2], Chapter 6).
In this paper, we establish the connection between SPICE and

standard sparse estimationmethods such as the Lasso [6] and the
LAD-Lasso [7]. This connection, based on the so-called Elfving
theorem from optimal experiment design [8], puts the SPICE
method into perspective, allowing us to examine the asymptotic
properties of SPICE under several scenarios by simply applying
the existing theory for the Lasso and its variants (see, e.g., the
recent book [9]). Conversely, the relationship between SPICE
and Lasso-type estimators suggests that SPICE may be used as
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a (new) numerically efficient technique for computing Lasso
estimates.
The manuscript is organized as follows. Section II describes

the spectral line estimation problem and the SPICE method.
Section III establishes the relation between SPICE and Lasso-
type sparse estimation methods. In Section IV a simulation ex-
ample illustrating the equivalence between SPICE and a version
of Lasso is presented. Finally, Section V concludes the paper.
Notation: Vectors and matrices are written in bold lower-

case and uppercase fonts, respectively. and denote transpo-
sition and complex conjugate transposition, respectively.
and stand for the real and imaginary parts of the complex
number , and is the square root of is the set of non-
negative real numbers, and is the complex plane.

and correspond to the 1-norm, Euclidean norm, Frobe-
nius norm and absolute value, respectively. is
a diagonal matrix whose diagonal is given by . is
the identity matrix. denotes mathematical expectation.

II. PROBLEM FORMULATION AND SPICE METHOD

Consider the following problem: Let be given,
satisfying the equation

(1)

where is a complex Gaussian random vector of zero
mean and covariance matrix , and

are known complex vectors. are unknown
complex quantities, of the form , where the phases

are independent random variables uniformly
distributed in , and the magnitudes are
deterministic parameters to be estimated. The spectral line es-
timation problem considers a particular case of (1), where the
’s are vectors of imaginary exponentials of the form [2].
In order to estimate the magnitudes , let

where

The SPICE estimate [1] of the ’s is an iterative procedure of
the form:

(2)
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where is the iteration number, and is the estimate of
at iteration . This method is initialized by any initial estimate
of the ’s, and its estimate converges to the matrix
minimizing

(3)

The ’s that give correspond to the limits .
Remark 1: The presence of the inverse of in the SPICE

method may in principle lead to complications if such a matrix
becomes singular. However, if the ’s are chosen to be
strictly positive, then is generically non-singular (since
is generically in the column range of , and is a

Gaussian random vector which lies in the null space of
with probability 0). Because of this, here and in the sequel
we will implicitly assume for the derivations that is non-
singular.
Remark 2: In [5], SPICE was defined based on a slightly dif-

ferent . We will not consider that version of SPICE, be-
cause such a version can only be defined in a multi-snapshot
case. However, similar steps as the ones described in the fol-
lowing sections can be applied to the method in [5] to arrive at
an equivalent Lasso-type formulation.

III. ANALYSIS OF SPICE

The first version of SPICE in [1] allows the variances to be
different, while a variant of the method imposes the constraint
that ([1], Section III.D). We will treat these
cases separately, starting with the case where the variances can
be different.

A. Different Variances

As shown in [1], the function in (3) can be written as

hence minimizing is equivalent to minimizing

(4)

subject to , where

To further simplify the problem, in (Appendix B of [5]) it is ar-
gued that the minimization of is equivalent (up to a scaling
of the ’s) to solving

(5)

Equation (5) will be our starting point for the analysis of SPICE.
A slight simplification can be achieved by defining
and for all . This gives the
re-parameterized problem

(6)

The strategy now is to consider a derivation similar to Elfving’s
theorem, from optimal experiment design [8], to obtain an opti-
mization problem equivalent to (6). First notice that

(7)

where and . Here
the symbol in the summation sign indicates that the values of
for which should be omitted from the sum. The proof

of (7) is given in the Appendix.
The combination of (6) and (7) gives a minimization problem

in and , i.e.,

(8)

where the order of the minimizing variables can be exchanged.
Now, when the ’s are kept fixed, the minimization of the cost
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in (8) with respect to can be done explicitly. To see this,
notice that by the Cauchy-Schwarz inequality we have

where the lower bound is attained if and only if there is an
such that

or

The proportionality constant can be determined from the
condition , giving

(9)

Putting this expression in (8) gives the reduced problem

or, equivalently,

(10)

This is a complex-valued -optimization problem, hence it can
be expected to give a sparse solution in . This, in turn, gives
a sparse solution in through (9), and thus in

To explore the behavior of SPICE in more detail, we can no-
tice, by denoting first components of the -th row of as
, i.e., , and observing that the con-

straints in (10) read for , that
(10) is equivalent to

where , or more compactly

(11)

where , i.e., corresponds to the first

columns of . Equation (11) is essentially a simplified (com-
plex-valued) version of the LAD-Lasso [7] or the RLAD [10],
where takes the role of a parameter vector, and the regressors
have been scaled by , so that their Eu-
clidean norms are equal to . The fact that the cost function
in (11) considers the norm of the residuals instead of
their norm suggests that SPICE might be a robust estimator
against outliers or errors with heavy-tailed distributions (since,
heuristically speaking, it does not penalize large deviations of
the residuals from zero, due mainly to outliers, as much as the
norm); in fact, this is the reason why some authors have pro-

posed the use of the LAD-Lasso instead of the standard Lasso
in the presence of outliers [7].
We can summarize these results in the following theorem:
Theorem 1: The limit value of the SPICE iterations (allowing

for different ), which corresponds to the minimizer of (3), is
also given by theminimizer of (11), by performing the following
change of variables:

where for .
Remark 3: In [11], a slightly different version of SPICE has

derived, based on (4) rather than on (5). By performing essen-
tially the same steps as in the derivation of Theorem 1, we obtain
the following corollary, which shows that the SPICE method of
[11] is equivalent to the same LAD-Lasso problem, but where
the relation between the ’s and ’s is simpler.
Corollary 1: The limit value of the SPICE iterations de-

scribed in [11] (allowing for different ) is also given by
the minimizer of (11), by performing the following change of
variables (where for ):

B. Equal Variances

Now we will analyze the variant of SPICE where the vari-
ances are constrained to be equal. The development in this case
is exactly as in Section III-A until (8). At this point, the con-
straint implies that ,
which allows us to simplify (8) as
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where for , and
. Now, the Cauchy-Schwarz argument used in

Section III.A reveals that

and from the condition we obtain

The constants , on the other hand, must be the solution of

(12)

Just as in Section III.A, (12) can be rewritten as

where , or

(13)

Equation (13) is essentially a simplified (complex-valued) ver-
sion of the standard Lasso [6], where takes the role of a pa-
rameter vector, and the Euclidean norms of the regressors have
been equalized. We summarize these results as a theorem:
Theorem 2: The limit value of the SPICE iterations (im-

posing the constraint that ), which corresponds
to the minimizer of (3), is also given by the minimizer of (13),
by performing the following change of variables:

The following remarks are appropriate:
Remark 4: As for the case of different variances, it is possible

to follow the same steps leading to Theorem 2 to derive a Lasso
equivalent for the version of SPICE derived in [11], based on (4)
rather than on (5). The result is stated in the following corollary,
which shows again that the SPICE method of [11] is equivalent
to the same Lasso problem as in Theorem 2, but where the rela-
tion between the ’s and ’s is simpler.
Corollary 2: The limit value of the SPICE iterations de-

scribed in [11] (imposing the constraint that )
is also given by the minimizer of (13), by performing the
following change of variables:

Remark 5: The results stated in Theorems 1 and 2 are quite
surprising, because they reveal that different assumptions on the

noise variance produce versions of SPICE which are equivalent
to two quite different but standard sparse estimators, namely the
LAD-Lasso and the Lasso.
Remark 6: Even though the equivalent Lasso formulations

are not given in the same variables as the SPICE method, the re-
quired variables transformations (between the ’s and the ’s)
are simple scalings. This means that the sparsity properties of
SPICE are essentially the same as the ones for the equivalent
Lasso estimators.
Remark 7: The optimization problem given by (13) is not

written as a standard Lasso problem, since the first term is a not
a squared -norm, but rather as a square-root Lasso [12]. These
two formulations, however, are equivalent. To see this, notice
that is the Lagrangian form of an
optimization problem of the form
; this problem is equivalent to ,
whose Lagrangian formulation is .
This means that there is a (possibly data-dependent) bijection

for which Lasso and the square-root Lasso give the
same estimate.
Remark 8: The relations between the ’s and the ’s given

by Theorems 1 and 2 have a nontrivial structure, which comes
from the fact that SPICE considers the (unknown) noise vari-
ances as parameters to be estimated, and puts them in the same
footing as the amplitudes of the spectral lines. This relation is
simpler when the version of SPICE from [11] is considered in-
stead, as shown in Corollaries 1 and 2.
Remark 9: The cost function minimized by SPICE

in (4) can be interpreted as follows: The first term of
, is a model fit measure, while the second term,
, can be interpreted as a trace heuristic or nuclear

norm regularization (since , so the trace and
nuclear norm coincide) [13]. This regularization term is known
to encourage low rank matrices , which, due to its structure,

, enforces the vector to be
sparse. This interpretation thus provides an alternative heuristic
justification for the sparsity-inducing behavior of SPICE.
Remark 10: Theorems 1 and 2 have been presented for the

complex-valued versions of SPICE. However, the derivations in
this section apply almost unaltered to real valued problems. This
means that Theorems 1 and 2 establish Lasso-type equivalences
for the real-valued versions of SPICE as well. Notice, how-
ever, that the complex Lasso versions can be seen as real-valued
Group Lasso estimators, as explained next.
Remark 11: The complex-valued nature of SPICE is inherited

by its Lasso equivalents. Thus, for example problem (13) does
not behave as the standard (real-valued) Lasso, but as the (real-
valued) Group Lasso [14]. To see this, let us define

Based on this notation, (13) can be written as

(14)
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The second term in (14) is a sum of Euclidean norms, which
promotes group sparsity, i.e., it tries to enforce that both the real
and imaginary parts of individual entries of become zero si-
multaneously. Similarly, (11) corresponds to a grouped version
of the LAD-Lasso.
Remark 12: It is well known that the real-valued LAD-Lasso

can be written as a linear program (LP), which can be solved
in a very efficient manner using existing techniques. For the
standard Lasso, there are also very efficient computational
methods. However, as Theorems 1 and 2 show, the original
(complex-valued) SPICE method is actually equivalent to a
group LAD-Lasso estimator (or to a standard group Lasso
estimator), which cannot be formulated as an LP, but as a
second-order cone program (SOCP). Many of the algorithms
developed for the standard Lasso or the LAD-Lasso, such as the
homotopy method [15] or LARS [16], cannot be extended to
the group (LAD) Lasso, since its solution path is not piecewise
affine, even though accelerated proximal methods [17] have
been successfully applied to this class of estimators. This means
that SPICE may be a potentially attractive technique in this
case, to be compared with proximal methods (some of which
depend on tuning parameters, to be specified by the user, while
SPICE does not require user intervention).
Remark 13: It is well known that the (LAD-)Lasso is a bi-

ased estimator [9], because while the criterion
gives unbiased estimates, the addition of an -norm regular-
ization term pushes the estimates towards zero, in a way that no
simple re-scaling of the parameters can correct. This means that
SPICE will give in general biased estimates. However, this is
not a relevant issue with either (LAD-)Lasso or SPICE, since,
in order to correct the presence of bias, it is standard practice
with the (LAD-)Lasso to re-estimate the non-zero components
using least squares, and this idea can be applied to the SPICE
estimates as well. The question of whether SPICE can detect
the correct frequencies of the measured multisine is equivalent
to the study of the support recovery properties of (LAD-)Lasso
[9].
Remark 14: The equivalence between SPICE and Lasso

allows the use of the well-developed theory for the Lasso to
study the asymptotic behavior of SPICE [9], [18]. Take, for
example, the spectral line estimation problem described in the
next Section IV, where for some , the sam-
ples are taken at uniformly distributed time instants in a fixed
interval, and the components of have unit variance. Then, by
suitably modifying an argument in ([19] Section 2), it can be
shown that as the number of samples tends to , if the true
amplitudes and number of frequencies are kept constant (but
not necessarily the location of the frequencies), then SPICE
(assuming equal variances) may not enjoy persistency, or
prediction consistency, i.e., .
To achieve persistency, the second term in (13) should be
amplified by a positive number such that and

(e.g., ); see [19] for further details.
This problem can be solved by suitably modifying SPICE, but
this aspect will be properly addressed in a future publication.
Remark 15: Recently, a re-weighted version of SPICE, called

LIKES, has been proposed in [11]. We will not address here the
relation between LIKES and standard sparse estimators (such as

Fig. 1. Spectrum obtained by SPICE and LAD-Lasso.

Sparse Bayesian Learning (SBL) and Automatic Relevance De-
termination (ARD) [20]), because this has partly been discussed
in [11], and the equivalence to Lasso-type estimators can be for-
mally studied along the lines of [20].

IV. SIMULATION EXAMPLE

In this section, a numerical example, based on ([1], Section
IV), is used to illustrate the equivalence between SPICE and the
LAD-Lasso, formally established in Theorem 1.
Let , be the -th sample, where

the ’s are irregular time samples, drawn independently from a
uniform distribution on . The basis functions considered
here are of the form

where . Following [1], we take , and
to be given by (1) with

and , and otherwise. The phases
and are independent random variables, uniformly distributed
in . The noise is assumed to have a covariance matrix

.
The results of applying 100 iterations of SPICE, (2), and

its LAD-Lasso equivalent (11), solved using the CVX package
[21], are presented in Fig. 1. As the figure shows, both esti-
mators practically coincide, their differences being mainly due
to numerical implementations. Notice also that these estimators
correctly detect the location of the peaks of the true spectrum,
even though the estimated amplitudes do not approach their true
values; this observation is consistent with theoretical results re-
garding the bias of the Lasso and its variants [9]. On a PC with
an 2.53 GHz Intel Core Duo CPU and 4 Gb RAM, 100 iterations
of SPICE take 23.0 s, while the implementation of LAD-Lasso
using CVX only takes 14.6 s. However, if is further increased
to 1000, CVX is incapable of solving the LAD-Lasso problem,
while SPICE can still provide a good (and numerically reliable)
estimate.
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V. CONCLUSION

In this manuscript, the recently proposed SPICE method for
sparse estimation has been studied, and its relation to Lasso-type
estimators has been established. This connection may enable the
use of existing theoretical results for the Lasso to predict the
behavior of SPICE in diverse problem settings, and, at the same
time, the application of the computationally efficient algorithm
developed for SPICE to sparse estimation problems where the
Lasso algorithms are currently impractical.
As a interesting future line of research, the relation between

SPICE and the Group Lasso suggests that the former method
could be modified to deal with general group sparsity prob-
lems (instead of only groups with two real variables). In addi-
tion, from this relation it is easy to modify SPICE in order to
compensate for deficiencies already detected in standard Lasso
estimators, such as lack of consistency in sparse support re-
covery, which can be fixed by adding re-weighting steps (see,
e.g., [22]).

APPENDIX
PROOF OF (7)

In this Appendix we prove (7). Without loss of generality we
can assume that the values of for which have been
removed from the sum. We start by rewriting (7) as

(15)

where . We will proceed by estab-
lishing the minimum value of the right hand side of (15) and
showing that it coincides with its left hand side. To this end, no-
tice that since that optimization problem is convex, is an op-
timal solution of the right hand side of (15) if and only if there
is a Lagrange multiplier such that

or, equivalently,

From this set of equations we obtain

and the optimal cost of right hand side of (15) gives

, which corresponds to the left hand side of
(15). This concludes the proof of (7).
Remark 16: Equation (7) is closely related to the so-called

Gauss-Markov theorem, which states that, in a linear regression
framework, the least squares estimator is the minimum vari-
ance unbiased estimator [23]. In fact, let , where

. Furthermore, suppose we are
interested in estimating . Then, the cost function in
the right hand side of (7) can be interpreted as the variance of

an estimate of , and the corresponding constraint
restricts to be unbiased, while the left hand side of

(7) corresponds to the minimum achievable variance, according
to the Gauss-Markov theorem.
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