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A Chernoff Relaxation on the Problem of Application-Oriented Finite
Sample Experiment Design

Dimitrios Katselis, Cristian R. Rojas, Hakan Hjalmarsson and Mats Bengtsson

Abstract— In this paper, application-oriented experiment de-
sign formulated as a chance constrained problem is investigated.
The chance constraint is based on the presumption that the
estimated model can be used in an application to achieve a
given performance level with a prescribed probability. The
aforementioned performance level is dictated by the particular
application of interest. The resulting optimization problem is
known to be nonconvex in most cases. To this end, convexi-
fication is attempted by employing a Chernoff relaxation. As
an application, we focus on the identification of multiple input
multiple output (MIMO) wireless channel models based on a
general L-optimality type of performance measure.

I. INTRODUCTION

A basic subproblem in the context of system identification
is that of experiment design. Overviews of this topic over the
last decade can be found in [1], [2], [3], [4]. Contributions
include convexification [5], robust design [6], least-costly
design [7], and closed vs open loop experiments [8].

In the context of application-oriented experiment design,
the experiment is designed to optimize a performance metric
associated with the particular application where the estimated
model will be used, [9], [10], [11]. A conceptual framework
for application-oriented experiment design was outlined in
[4]. The framework hinges on introducing a function J
which quantifies the degradation in performance, when a
model that differs from the true system is used, in the
design of the application. Suppose that the performance
is deemed acceptable if J < 1/v for some parameter =,
which we will call accuracy. Clearly, J is dependent on a
model G and the set of admissible models is denoted as
Eadm = {G : J < 1/~}. The system identification objective
is then to select a model in &,4,,,. Therefore, the least-costly
experiment is given as follows:

min Experimental effort
Experiment ( 1 )

s.t. G € Eudm

where (3 is the identified model. For the experimental effort,
different measures commonly used are input or output power,
and experimental length.

In this paper, assuming complex-valued parametric model
identification, our model is represented by a parameter vector
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h € C” and its estimator by h € C". Therefore, we can
formulate the chance constrained version of (1) as follows:

MiNExperiment  EXperimental effort

S.t. P)({ﬁ S gadm} >1—c. @)

Here, Py {Y'} is the probability of the event Y over the
probability space corresponding to X. In our context, &
corresponds to h or to (h,h) depending on the employed
parameter estimator. To this end, the parameter estimators
employed in this paper are the minimum variance unbiased
(MVU) and the minimum mean squared error (MMSE)
estimators [12]. For the MVU case, the parameter estimator
has the distribution:

h ~ CN(h, Ziyy), 3)

while for the MMSE case, the posterior parameter distribu-
tion is:

h |y7 u ~ CN(ﬁvI]:,hl/IMSE)' “4)

In the last two equations, CNA (X, Q) stands for the circularly
symmetric complex Gaussian distribution with mean X and
covariance Q, Zgmvu [12] and Zrmmsg are the inverse
covariance matrices for the MVU and MMSE estimators,
respectively and u € C"7* By € C"#*B are the (complex-
valued) input and output data. More details will be provided
in Section III.

From the definition of &,4,, and with the rest of our
assumptions, it is clear that the chance constraint in the last
problem can be alternatively written as

Py{J(hh)>1/y} <e, 5)

where h = h — h denotes the parameter estimation error.
This constraint is typically nonconvex. In [4], this chance
constraint is replaced by a convex linear matrix inequality
(LMI) equivalent to the relation &;q C Eqqm, Where E;4 cor-
responds to a confidence ellipsoid for G. Alternative convex
relaxations have been subsequently suggested in [13]. In this
paper, following the analysis in [13], a Chernoff relaxation
is employed to approximate the chance constraint (5). This
approximation is the tightest among those described in [13].
However, the tightness comes at the cost of an increased
computational burden due to the necessity of tuning a certain
scalar parameter via line search, as we illustrate in the
following. We propose here a way to annihilate this burden,
thus making attractive the complexity of the aforementioned
Chernoff relaxation. An alternative analysis to the one in
this paper has been presented in [14]. There, a Markov



bound relaxation of the chance constraint is pursued, yielding
semidefinite programming (SDP) relaxations of (2). The used
bound in [14] is looser than the one presented in this paper.

The paper is organized as follows. In Section II, the
Chernoff bound is used to convexify the chance constraint in
(5) based on the analysis in [13]. Section III introduces the
MIMO communication system model and other necessary
definitions for our purposes. In Section IV, we adjust the
earlier derived Chernoff relaxation to the case of MIMO
systems. Section V summarizes the specific L-optimality
performance measure of interest. Some simulation examples
are given in Section VI. Finally, the paper is concluded in
Section VII.

Notation: T, H and * denote the transposition, Hermitian
transposition and complex conjugation operators. || - || is
the Euclidean norm of a (complex) vector or a (complex)
matrix. R{-} and 3{-} denote the real and imaginary parts
of a complex number or vector, respectively. For a matrix
A, A, ; denotes its (7,7)th element. For a square matrix
A, X\i(A) denotes its ith eigenvalue, while Apax(A) is its
maximum eigenvalue. Moreover, 1,,, denotes the all ones
m X n matrix. Finally, vec(-) denotes the vectorization of a
matrix, i.e., the stacking of its columns into a single vector.

II. CHERNOFF RELAXATION

A possible convex approximation of the chance constraint
(5) can be based on the Chernoff inequality [15]. To this end,
we assume that J is or can be approximated by a quadratic
form with respect to h:

J(h,h) = h'Z,4,.h, (6)
where Z,4,, is a Hermitian positive semidefinite matrix
possibly dependent on h.

Using the analysis in [13], the chance constraint can be
relaxed as follows:

Py{J(hh) > 1/7} =
Hr—1/2 —1/2
P {x"Zy "ToamZy x> 1/7} <

1 _ _ 1
Px {exp [Z A (T ToamZe ?
i=1

2]

vt
where Zp is ether Zgpmyy or Zrmmse depending on the
employed estimator, x I:;/ h ~ CN(0,I) and X ~
CN (0,1) is another complex, circularly symmetric, Gaus-
sian random vector corresponding to a suitable rotation of
x. Furthermore, ¢ > 0 is an arbitrary constant that can
be used~t0 control the tightness of the Chernoff bound to
Px{J(h,h) > 1/~}.

Based on the circular symmetry of X, the random variable
27]2 = 2 (R{F:})* + 2 (3{F;})” is chi-squared distributed
with two degrees of freedom. Note that the variances of
the real and imaginary parts are both equal to 1/2. The
independence of (R{Z;})* and (3{Z;})* alleviates us from
the analytical burden of using the chi-squared distribution
in the following analysis, by exploring the existence of the
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exponential function inside the expectation. To this end,
following [13], we may use the result:

1
vV1—1t
for t € (—o0,1). Here, y = R{z;} or y = I{&;}, ie.,
y ~ N(0,1/2). Using the previous results, we end up with
the following chance constraint bound:

E [exp(ty®)] = (7)

1

v - Ly, (Igl/zzadng”z)
1 1
oo (-2) v
) det (1 RS il A sl 2)
where ¢ is allowed to take any wvalue in

()\max (IF_l/QIadmIF_l/2 ,00 ]. Based on this bound, a
sufficient condition for (5) to hold is:
1 1

exp < <
14T P i T )

vt

)det(

Using the analysis in [13], this is equivalent to:
1

1
—tlne — tindet <ItM> < -, 9)
Y
1/2 1/2
11\;12 Iadm > 07 f}Q Iadm > 0.
Iadm IF Iadm IF

Here, M = M ¢ Crr"rX"17r s an auxiliary (free)
matrix. Note that the first equation in (9) is a convex
constraint jointly in ¢t and M, although it cannot be written
as a linear matrix inequality.

III. MIMO SYSTEM MODEL

We consider a MIMO communication system with nr
antennas at the transmitter and np antennas at the receiver
[16]. The received signal at time ¢ is modelled as

y(t) = Hx(t) + n(t)

where x(t) € C"T and y(t) € C"F are the baseband
representations of the transmitted and received signals, re-
spectively. The impact of background noise and interference
from adjacent communication links is represented by the
additive term n(t) € C"2. We will further assume that
n(t) is a (weakly) stationary signal'. The channel response
is modeled by H € C™2*"T_ which is assumed constant
during the transmission of one block of data. In the context
of either the MVU or the MMSE estimators, two different
models of the channel will be considered:
1) A deterministic model.
ii) A stochastic Rayleigh fading model, i.e. vec(H) €
CN (0, R), where, for mathematical tractability, we will

"Note that the statistical characterization of x(t) is irrelevant in our
context, thus omitted.



assume that the known covariance matrix R possesses
the Kronecker model used, e.g., in [17], [18]:

R=RIL@Rg (10)
where Ry € C"7*"T and Ry € C"F*"E are the spa-
tial covariance matrices at the transmitter and receiver
side, respectively. Here, ® denotes the Kronecker prod-

uct [19]. This model has been experimentally verified
in [20], [21] and further motivated in [22], [23].

We consider training signals of arbitrary length B, repre-
sented by P € C*t*B_ whose columns are the transmitted
signal vectors during training. Placing the received vectors

inY = [y(1) y(B)] € C"=*B we have:
Y — HP + N,
where N = [n(1) n(B)| € C"#*8B is the combined

noise and interference matrix.
Defining P = PT ® I, we can then write
vec(Y) = P vec(H) + vec(N). (11)
As, for example, in [17], [18], we assume that vec(N) €
CN(0,8S), where the covariance matrix S also possesses a
Kronecker structure:
S =S, ®Sk. (12)
Here, Sg € CB*P represents the temporal covariance
matrix> and S € C"#*"% represents the received spatial
covariance matrix.

In the case of the MMSE estimator, the channel and
noise statistics will be assumed known to the receiver during
estimation, while in the case of the MVU estimator only the
noise statistics will be considered known. Statistics can often
be achieved by long-term estimation and tracking [24].

As far as the different ways to estimate the MIMO channel
H are concerned, the MVU channel estimator for the signal
model (11), subject to a deterministic channel (Assumption
i), is given by:

vec(Hyvy) = (PTST'P) PSS 1vec(Y).  (13)
For this estimate, the inverse covariance is
Timvy = PYSIP. (14)

For the case of a stochastic channel model (Assumption
ii), the first and second moments of the posterior parameter
vector are
VeC(ﬁMMSE) = (R_l + f)HS_lf))_lf)HS_l
IFTI&IMSE = (R_l + ﬁHS_lf’)_l

vee(Y)
(15)
2We set the subscript Q to S to highlight its temporal nature and the

fact that its size is B X B, thus Sg # Rep. In this paper, the matrices with
subscript R are np X nR.
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IV. CONVEX FORMULATIONS BASED ON THE CHERNOFF
RELAXATION

The experimental effort of interest in our context is as-
sumed to be the input power. Focusing on the case of the
MVU estimator and using (9), the optimization problem (2)
is relaxed as follows:

minp v I [PPH] =Tr [P*PT}
M T2
S.t. Il/2 P*S—Tf)dTm® S_1 = Uy
adm Q 12 R
tI T
T2 P*S*Tlngmea szt | =0
adm Q R
—tlne—tlndet( — %M) < i
vy

Clearly, the last formulation is a relaxation of (2) based on
the Chernoff bound and no further relaxations. Furthermore,
we set Pg = P*SéT/ ?. Using an additional free variable
5 € R, the last optimization problem takes the form

ming p, Mt
s.t. Tr [PQSSPg] §/B
1/2
11\;[2 Iadm
Iadm PQPg ® Sgl (16)
1/2
tI /.. >0
TV? PoPH @S | T
adm Q Q® R

—tlne — tlndet (I — %M < %

Since our target variable is P, it would be of interest to
convexify the last formulation with respect to this decision
variable. In essence, what we would like to achieve is to
cope with the existence of both PoP¢ and PP in the
last formulation. There are two alternative ways in achieving
this goal, which we summarize in the following.

The first way is to introduce X = vec(Pg) vecT(Pg) =

vec(Pg) vecH(Pg) € CrrBxnrB and use the following
identity:
Tr[PoSLHPG] = vec! (SoP) vee(Ph) = Tr[X(I® S§)],
which is based on simple properties of the vectorization op-
erator. Note that this expression is linear in X. Furthermore,
setting Z = PQPg we have

B
Ziw = (PoP8)is Z Pg)im(PE)m
m=1

B
= Z Xt (k=1)B,m+(i—1)B>
m=1

which can be alternatively expressed as

X"} 1, ®1px1),

a7
© denoting the Hadamard or elementwise matrix prod-
uct [25]. Note that this expression is also linear in X.

Z = (InT & 11><B) {(]-nTan ®IB)



Combining the previous results, we can write (16) as:

ming x M,z 5
M T2
s.t. 72 g @(:dsnil ,
adm 1/2R
I52 ZIdilSm—1 =0
adm R
—tlne —tindet (I — %M) <41
y

Z = (InT & ]-1><B) {(1nT><nT ®IB) © XT} .

(ITLT &® 1B><1)7

Tr [X (I® Sg)] <3, X >0, rank [X] = 1.

(18)

It is clear that by introducing X, we have managed to
eliminate the formulation from the existence of both products
PQPg and Pg Py and at the same time to come up with
a formulation that is linear in the substituting variable X.

Problem (18) is nonconvex. Ignoring the rank constraint,
this problem is convex. We can use similar handling as in the
case of rank-constrained SDP problems to obtain a solution
for our target variable Pg. Upon obtaining the optimal X,
say X,, the rank-one solution is selected to be equal to
VA1q1, where )\ is the greatest eigenvalue of X, and q
the corresponding eigenvector. We underline here that this
is an intuitive but otherwise ad hoc solution, which has
been observed to deliver good performance in practice, in
the context of many rank-one constrained problems that lead
to SDP formulations after the elimination of this rank-one
constraint [26]. Nevertheless, within the context of MIMO
channel estimation, it has been observed that this solution
does not necessarily deliver good performance [14], mainly
because of the geometry-destructive de-vectorization step
that has to be performed to yield Pg and therefore the
optimal training matrix P,.

Trying to avoid the de-vectorization, we also come to the
second way of how to cope with the existence of both PQPg
and Pg Py in (16). Using similar identities as before for
Tr [PoSHP4 ] and the Cauchy-Schwarz inequality, we can
obtain the following bound:

Tr [PQSng] < Hvec (S*Q) || [vec (Z)]||, (19)
where we have used the fact that || vec(Pg Po)ll =
| vec(PoPE)| -

Using (19), a constrained version of (16) is obtained:
mingzm;: S
1/2
s.t M Iadm > ()
s 1/2 —1 = Y
Iadm Z ® SR
S o
T Z@SgE |77
—tlne —tIndet (I — %M) < %,
[vec(Z)|| < B/[ vec(Sg)ll, Z=1Z" >0,
(20)

which is a convex problem.
Although (20) is a convex problem, the usual optimization
packages can not handle the Indet for the free variable t.
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This is due to the division 1/t in the case of CVX. The
usual way to deal with this problem is to tune ¢ via line
search [13]. However, this translates to great computational
burden. First, a good initial value for ¢ has to be guessed
and an appropriate stepsize for the update of ¢ to be selected.
These choices are problem dependent. Then, the line search
has to be established on the basis of descent directions
and the employed package has to solve a sequence of
optimization problems for every new ¢, until the training
matrix of minimum power is reached within a predetermined
proximity level.

An idea to overcome this problem relies on lower bound-
ing the left hand side of the Indet constraint in such a way
that the division 1/t vanishes. Clearly, the tightest the lower
bound, the better. We propose here such a bound, although
better bounds may exist. Note that —¢In det( — %M) =
—t 3 In (1 — A (M) /t), where {\;(M)}'7"" are the
eigenvalues of M. Since it is also required that t =M < I
(so that the In det expression is defined in R) , we have that
t=1\;(M) < 1 for all i = 1,2,...,ngny. Therefore, using
the Taylor expansion theorem, we obtain

In (1 - 1&(1\/1)) =

since all the summands are negative. Combining the above
results, the following lower bound is obtained:

i (s

k
/\Z(M)> < —%/\Z(M),
k=1

1

v
2L

1
—tlne+tr (M) < —tlne —tIndet (I— tM> <

We therefore replace the In det constraint in (20) by —tIlne+
tr (M) < 1/~. This corresponds to a relaxation of the In det
constraint.

Upon obtaining the optimal Z, say Z., the selection of
the training matrix P has to be performed. To this end,
assume that the eigenvalue decomposition (EVD) of Z, is
Uz Dy, UIZ{*, where Uz, € C"T*"7T jg its modal matrix
and Dz, € R"T*"T a diagonal matrix containing its eigen-
values in decreasing order. Assume also that the EVD of Sg
is UgDqUg, where Ug € CP*P is its modal matrix and
Dg € RP*B s a diagonal matrix containing its eigenvalues
in order that will be determined in the following. We denote
as Up-D p*Vg* the singular value decomposition (SVD)
of P*. Since Z = PQPg = P*SéTPH, it is clear that
there is an infinite number of P’s which can produce Z,,
since if Pg, is such a choice then Py I’ is also a valid
choice, where T' € CB*® is an arbitrary unitary matrix>.
This argument shows that our main concern with respect to
the selection of P is the formation of Z... An immediate and
intuitive way to make such a choice is to select Up« = U,
and Vp« = Ug. This implies that Dp~ must satisfy the
following relationship:

Dz, =Dp-D;'Dp- (22)

31f Pgistall, Z = PQPH implies a rank constraint on Z. Here, we
assume that B is large enough so that this is not an issue.



ie. (Dp-(i,i))? = Dy, (i,i)Dg(i,i),i = 1,...,np. Ad-

ditionally, the ordering of the eigenvalues Dg(i,4),i =
1,...,n7, should be such that
nr

Tr[P*P"] =Y (Dp-(i,i))?

i=1

(23)

is minimized. By our assumptions and using Lemma 1 in
[27], the diagonal entries of Dg should be arranged in
ascending order. The above choices determine the optimal
P*, i.e., the optimal P, say P,.

As for the MMSE channel estimator, the corresponding
optimization problem will be as follows:

mingzm: S

1/2
s.t. 11}/42 R fa;% g1 >0
adm R
1/2
f}2 Iadm L 0
1 — )
.. R +Z®Sy

—tlne+tr (M) < 1/7,
[vee(Z)]| < B/ vec(Sp)ll;
and the choice of the optimal P will be exactly the same as

in the case of the MVU estimator.
Remarks:

Z=17" >0,

1) The proposed choice of P in both cases is one possible
solution among infinite others that achieve Z,. Its
optimality is with respect to this aspect. However, in
strict mathematical sense this choice is ad hoc to the
same degree as the usual best rank-one approximation
of X, in the case of SDP-like handling. This is due
to the numerical nature of the presented approach.
Nevertheless, the proposed P is intuitive in the sense
that it resembles many analytically derived optimal
training matrices in the MIMO channel context, e.g.,
[28], [29], [30], [17], [27], [31].

2) In the case of the MMSE estimator, the information of
R is indirectly encoded in the proposed training matrix
P through the eigenvectors and the eigenvalues of the
corresponding Z..

V. APPLICATION: OPTIMAL TRAINING FOR THE
L-OPTIMALITY PERFORMANCE MEASURE

Consider a performance index of the form:
Jw (H, H) = vec (H)W vec(H),

for some positive semidefinite weighting matrix W. Taking
the expected value of this performance metric with respect
to either H or both H and H leads to the well-known L-
optimality criterion for optimal experiment design in statis-
tics [32]. In the context of MIMO communication systems,
such a performance metric may arise, e.g., if we want to
estimate the MIMO channel having some deficiencies in
either the transmit and/or the receive antenna arrays. The
simplest case would be that of a diagonal W with nonzero
entries in the interval [0, 1]. More general matrices can be
considered if we assume crosscouplings between the transmit
and/or receive antenna elements.

nT:4, nR=4, B=6, =1
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Fig. 1. np = 4,ng = 4,B = 6,7 = 1: Outage probability for the
L-optimality criterion with the MVU estimator. The accuracy parameter is
v=1
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Fig. 2. np = 3,ng = 4,B = 4,~v = 1: Outage probability for the
L-optimality criterion with the MMSE estimator. The accuracy parameter
isy=1.

VI. SIMULATIONS

The purpose of this section is to examine the performance
of the Chernoff-relaxed chance constrained training sequence
designs presented in this paper, and compare them with other
existing methods. In all figures, fair comparison among the
presented schemes is ensured via training energy equaliza-
tion. Additionally, the matrices Rr, Rg, S, Sr follow the
exponential model, that is, they are built according to

(R);; =1r7"" j >4, (24)

where 7 is the (complex) normalized correlation coefficient
with magnitude p = |r| < 1. We choose to examine the high
correlation scenario for all the presented schemes. Therefore,
in both plots |r| = 0.9 for all matrices Ry, Rg, S, Sk.
Figs. 1 and 2 demonstrate the outage probability of differ-
ent training designs, when the employed channel estimator
is either the MVU or the MMSE, respectively. The accuracy
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parameter v equals 1 in both figures. The corresponding
parameter values for np,ng and B are np = 4,ngp =
4, B 6 in Fig. 1 and ny = 3,ng = 4,8 4 in
Fig. 2. The matrices W in both figures are randomly selected
Hermitian positive semidefinite matrices, omitted here due
to their large sizes. In Fig. 1, the scheme “cMSE MVU”
corresponds to the optimal training for the MVU channel
estimator aiming at minimizing the channel mean square
error (MSE) in [33]. The corresponding scheme “cMSE
MMSE” in Fig. 2 in the optimal training for MMSE channel
estimation in [31]. The schemes “Markov” in both plots
are the training matrices for MVU and MMSE channel
estimation based on the SDP relaxations in [14]*. Finally,
the schemes “Chernoff” are the training matrices for MVU
and MMSE channel estimation developed in this paper. Both
figures demonstrate the superiority of the Chernoff relaxation
over the other methods with respect to their corresponding
outage probability, as it is intuitively expected.

VII. CONCLUSIONS

Convex relaxations for the chance constrained input design
problem based on a Chernoff bound have been presented
in this paper. The derived formulations were used in the
context of channel estimation based on L-optimality criteria
in the context of MIMO communication systems. Numerical
results have verified that the Chernoff-relaxed input designs
provide lower violation probabilities of the chance constraint
over other existing methods, while maintaining an attractive
computational complexity.
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