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Estimator Selection: End-Performance Metric Aspects∗

Dimitrios Katselis, Cristian R. Rojas, Carolyn L. Beck

Abstract— Recently, a framework for application-oriented
optimal experiment design has been introduced. In this context,
the distance of the estimated system from the true one is
measured in terms of a particular end-performance metric.
This treatment leads to superior unknown system estimates to
classical experiment designs based on usual pointwise functional
distances of the estimated system from the true one. The
separation of the system estimator from the experiment design
is done within this new framework by choosing and fixing
the estimation method to either a maximum likelihood (ML)
approach or a Bayesian estimator such as the minimum mean
square error (MMSE). Since the MMSE estimator delivers a
system estimate with lower mean square error (MSE) than
the ML estimator for finite-length experiments, it is usu-
ally considered the best choice in practice in signal process-
ing and control applications. Within the application-oriented
framework a related meaningful question is: Are there end-
performance metrics for which the ML estimator outperforms
the MMSE when the experiment is finite-length? In this paper,
we affirmatively answer this question based on a simple linear
Gaussian regression example.

I. I NTRODUCTION

A basic subproblem in the context of system identification
is that of experiment design. Overviews of this topic over the
last decade can be found in [5], [7], [15], [8]. Contributions
include convexification [10], robust design [13], [16], least-
costly design [3], and closed vs open loop experiments [1].

Recently, a new framework for performing experiment
design has been introduced. This framework is termed
application-oriented experiment designand it has been out-
lined in [8]. Specific investigations related to communication
systems were performed in [11], [12]. Denoting the end-
performance metric byJ and assuming thatJ depends on the
true and the estimated models, the performance is considered
to be acceptable ifJ ≤ 1/γ for some parameterγ, which
we callaccuracy. This motivates the introduction of a set of
admissible modelsEadm = {G : J ≤ 1/γ}, whereG denotes
the model to be inferred. With these definitions, the least-
costly experiment is formulated as follows:

min
Experiment

Experimental effort

s.t. Ĝ ∈ Eadm
(1)

whereĜ is the estimated model. For the experimental effort,
different measures commonly used are input or output power,
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and experimental length. For̂G, standard maximum likeli-
hood (ML) and Bayesian estimation methods, e.g., minimum
mean square error (MMSE), are usually employed.

Optimizing the experiment and optimally choosing the
system estimator are two problems that should ultimately
be tackled in a joint context. Nevertheless, both in the
framework of classical and application-oriented experiment
designs, aseparationstrategy is applied: initially, we select
and fix the system estimator to a choice that is known to
possess some optimality aspects, e.g., the ML or MMSE
estimators, and then we are optimizing the experiment.
For finite-length experiments the MMSE estimator is often
considered to be superior to the ML estimator. A related
meaningful question in the application-oriented framework
is: Are there end-performance metrics for which the ML
estimator outperforms the MMSE when the experiment is
finite-length?

In this paper, we affirmatively answer the last question
based on a simple linear Gaussian regression model that is
used here as the simplest possible example to provide the
necessary answer. The reason for choosing this example is
two-fold: except for the simplicity that it allows, it neutralizes
the choice of the optimal experiment. Via this example,
we re-examine the validity of the common belief that the
MMSE estimator is superior to the ML estimator, when
finite length experiments are used to identify the unknown
system. To this end, appropriate mean square error (MSE)-
like end-performance metrics are used that are meaningful
is certain applications such as in communication and control
systems. Finally, we numerically demonstrate the validityof
the claims verifying the purchased analysis.

This paper is organized as follows: Section II defines
the problem of designing the system estimator with respect
to the end performance metric. Section III presents some
results and comments that will be useful in the rest of the
paper, while it introduces approximations of the performance
metrics that the rest of the analysis will be based on. The
optimality of the ML and MMSE system estimators with
respect to the minimization of the aforementioned MSE-
like end-performance metrics is examined in Section IV.
Section V illustrates the validity of the derived results.
Finally, Section VI concludes the paper.

Notations: Vectors are denoted by bold letters. Super-
scripts T and H stand for transposition and Hermitian
transposition, respectively.| · | is the complex modulus. For
a vectora, a(m) denotes itsm-th entry. The expectation
operator is denoted byE(·). Finally, CN (µ, σ2) denotes the
complex Gaussian distribution with meanµ and varianceσ2.
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II. PROBLEM STATEMENT

Consider the scalar linear Gaussian model

y(n) = θu(n) + e(n), (2)

where y(n) is the observed signal at time instantn, θ is
the unknown system parameter assumed to be complex-
valued,u(n) is the input at the same time instant ande(n)
is complex, circularly symmetric, Gaussian noise with zero
mean and varianceσ2

e . We further assume thatE[u(n)] = 0
and E[|u(n)|2] = σ2

u. In addition, w(n) and u(n) are
independent random sequences, whilee(n) is a white random
sequence.

Assume that the experimental length is limited toN
time slots and that the maximum allowed input energy for
experimental purposes isE . We can collect the received
samples corresponding to the experiment in one vector:

yexp = θuexp + eexp, (3)

where yexp = [y(l −N + 1), y(l −N + 2), · · · , y(l)]T is
the vector ofN received samples corresponding to the ex-
periment,uexp = [u(l −N + 1), u(l −N + 2), · · · , u(l)]T

is the vector of N input symbols and eexp =

[e(l −N + 1), e(l− N + 2), · · · , e(l)]T is the vector ofN
noise samples. Considering the class of linear parameter
estimators, the system is estimated as follows:

θ̂ = fHyexp = θfHuexp + fHeexp, (4)

wheref is aN × 1 estimating filter.
A possible performance metric is the MSE of alinear

input estimator. The input estimator uses the system knowl-
edge and delivers an estimate of the input variable. We
call clairvoyant the input estimator that has perfect system
knowledge. Denoting the corresponding estimating filter by
c̃(θ), we can find its mathematical expression as follows:

c̃(θ) = argmin
c(θ)

E
[

|c(θ)y(n)− u(n)|2
]

, (5)

where the expectation is taken over the statistics ofu(n)
ande(n). If we set the derivative of the last expression with
respect toc(θ) to zero and we solve forc(θ), then the optimal
clairvoyant input estimating filter is given by the expression

c̃(θ) =
σ2
uθ

∗

|θ|2σ2
u + σ2

e

. (6)

We will call this the MMSE clairvoyant input estimator1. We
observe that as the signal-to-noise ratio (SNR) increases,i.e.,
σ2
e → 0, c̃(θ) → 1/θ. We call č(θ) = 1/θ the Zero Forcing

(ZF) clairvoyant input estimator. Due to this last convergence
and for simplicity purposes, we focus only on the ZF input
estimator in the sequel.

We can now introduce an end-performance metric of
interest, which will be used in the following analysis. Given
an input estimator, we define the excess of the input estimate

1The multiplication byy(n) is considered implicit.

based on an input estimator that only knows a system esti-
mate over the input estimator with perfect system knowledge,
thus leading to

MSEex = E

[

∣

∣

∣
c(θ̂)y(n)− c(θ)y(n)

∣

∣

∣

2
]

. (7)

In the sequel, this metric will be calledexcessMSE.
Our goal will be to determine the optimal parameter

estimators for fixed experiments of finite length so that
MSEex based on the ZF input estimator is minimized. To
this end, the following section presents some useful ideas.

III. PRELIMINARY RESULTS

Consider the ML estimator. For the linear Gaussian regres-
sion, this estimator coincides with the minimum variance un-
biased (MVU) estimator. We therefore replace our references
to the ML estimator by references to the MVU estimator
from now on. Since the MVU is an unbiased estimator, it
satisfiesfHuexp = 1. This condition implies thatE[θ̂] = θ.
For our problem assumptions, the MVU estimator can be
found by solving the following optimization problem:

min
f

σ2
e‖f‖

2

s.t. fHuexp = 1. (8)

Forming the Lagrangian for this problem and zeroing its
gradient with respect tof , we get:

fMVU =
uexp

‖uexp‖
2
. (9)

If we assume thatθ is a random variable and that its prior
distribution is known, then instead of the MVU one could
use the MMSE parameter estimator. With our assumptions
and the extra assumption thatE[θ] = 0, one can obtain [14]

fMMSE =
E[|θ|2]uexp

E[|θ|2]‖uexp‖
2 + σ2

e

. (10)

Assuming thatθ is a deterministic but unknown variable,
theMSEex of the ZF input estimator can be easily obtained:

MSEd
ex (ZF) = E





∣

∣

∣

∣

∣

θ̂ − θ

θ̂

∣

∣

∣

∣

∣

2




(

σ2
u +

σ2
e

|θ|2

)

(11)

(c.f. (7)). Here, the superscript “d” stands for “deterministic”.
If θ is assumed to be a random variable, then the correspond-
ing end-performance metricMSEr

ex is obtained by averaging
the last expression overθ.

Depending on the probability distributions of|θ̂| and |θ|,
the above MSE expressions may fail to exist. The MSEs
will be finite if the probability distribution function (pdf)
of |θ̂| is of orderO(|θ̂|2) as θ̂ → 0. A similar condition
should hold for the pdf of|θ| in the case ofMSEr

ex. In the
opposite case, we end up with aninfinite momentproblem.
In order to obtain well-behaved parameter estimators that
will be used in conjunction with the actual performance
metric, some sort of regularization is needed. Some ideas
for appropriate regularization techniques to use may be



obtained by modifying robust estimators (against heavy-
tailed distributions), e.g., by trimming a standard estimator,
if it gives a value very close to zero [9]. An example of such
a trimmed estimator is given as follows:

θ̂ =

{

fHyexp, if |fHyexp| > λ

λfHyexp/|f
Hyexp|, o.w.

(12)

wheref can be any estimator andλ a regularization param-
eter2.

Remark:Clearly, the reader may observe that the definition
of the trimmedθ̂ preserves the continuity at|fH

yexp| = λ.
Additionally, the event{fHyexp = 0} has zero probability
since the distribution offHyexp is continuous. Therefore, in
this caseθ̂ can be arbitrarily defined, e.g.,̂θ = λ.

Assume a fixedλ. Then, for a sufficiently smallλ
and a sufficiently high SNR during training, minimizing
MSEd

ex(ZF) is approximately equivalent to minimizing the
approximation

[

MSEd
ex (ZF)

]

0
=

E

[

∣

∣

∣
θ̂ − θ

∣

∣

∣

2
]

E

[

∣

∣

∣
θ̂
∣

∣

∣

2
]

(

σ2
u +

σ2
e

|θ|2

)

, (13)

as we show in the appendix. Using some minor additional
technicalities, we can work with

[MSEr
ex (ZF)]0 =

σ2
uEθ

[

|θ|2E

[

∣

∣

∣
θ̂ − θ

∣

∣

∣

2
]]

+ σ2
eEθ

[

E

[

∣

∣

∣
θ̂ − θ

∣

∣

∣

2
]]

Eθ

[

|θ|2E
[

|θ̂|2
]] , (14)

instead ofMSEr
ex (ZF). We call the last approximations

zeroth order input estimate excess MSEs. The following
analysis and results will be based on the zeroth order metrics
and they will reveal the dependency of the system estimator’s
selection on the considered (any) end- performance metric.

Remarks:

1) A useful, alternative way to consider the zeroth order
MSEs is to view them as affine versions of normalized
parameter MSEs, where the actual true parameter isθ̂
and the estimator isθ.

2) In the definition of (13), one can observe that after
approximating the mean value of the ratio by the ratio
of the mean values the infinite moment problem is
eliminated. In the following, all zeroth order metrics
will be defined based on thenon-trimmedθ̂ to ease
the derivations. This treatment is approximately valid
whenλ is sufficiently small.

IV. M INIMIZING THE ZEROTH ORDER EXCESSMSE

In this section, we investigate the selection of the system
estimator for the zeroth order excess MSE in the case of the
ZF input estimator.

2This parameter can be tuned via cross-validation or any other technique,
although in the simulation section we empirically select itfor simplicity
purposes.

A. ZF Input Estimator with a Deterministic System

The expectation operators in Eq. (13) are with respect to
eexp, u(n) ande(n). In this case, we have:

[

MSEd
ex (ZF)

]

0
=

|θ|2
∣

∣f
H

u
exp

− 1
∣

∣

2
+ σ2

e ‖f‖
2

|θ|2 |fHu
exp

|
2
+ σ2

e ‖f‖
2

(

σ2
u +

σ2
e

|θ|2

)

(15)
The numerator of the gradient of the above expression with
respect to3 f is given by the following expression:

[

|θ|2|ϕ|2 + σ2
e‖f‖

2
] [

|θ|2 (ϕ− 1)
∗

uexp + σ2
ef

]

−
[

|θ|2ϕ∗uexp + σ2
ef

]

[

|θ|2 |ϕ− 1|2 + σ2
e‖f‖

2
]

,

(16)

whereϕ = fHuexp. Settingf = fMVU, one can easily
check that the above expression becomes zero. Therefore:

Proposition 1: The MVU is an optimal system estimator
for the task of minimizing

[

MSEd
ex (ZF)

]

0
, when the sys-

tem parameter is considered a deterministic but otherwise
unknown quantity.
Remark:Note that even if

[

MSEd
ex (ZF)

]

0
depends on the

unknown system parameterθ, the optimal system estimator
does not in this case.

B. ZF Input Estimator with a Random System

In this case, the prior statistics ofθ are known. The zeroth
order excess MSE is given by:

[MSEr
ex(ZF )]0 =

|ϕ− 1|2 (E[|θ|4]σ2
u + E[|θ|2]σ2

e)

E[|θ|4]|ϕ|2 + σ2
e ‖f‖

2 E[|θ|2]

+
σ2
e ‖f‖

2
(E[|θ|2]σ2

u + σ2
e)

E[|θ|4]|ϕ|2 + σ2
e ‖f‖

2 E[|θ|2]
(17)

Differentiating this expression w.r.t.f and settingf =
fMVU we zero the gradient. Therefore:

Proposition 2: The MVU is an optimal system estimator
for the task of minimizing[MSEr

ex(ZF )]0, when the system
parameter is considered random.

Via tedious calculations, we can show that the MMSE
channel estimator does not zero the gradient.

Remark:This result iscounterintuitive: it says that when
one has knowledge of the system statistics but uses a
ZF input estimator, one should ignore these statistics in
choosing a system estimator for minimizing the zeroth order
excess MSE. This is themajor result in this paper: The
belief that combining the MMSE system estimator with any
performance metric is better than using the MVU/ML system
estimator when finite length experiments are used to identify
the system, isnot valid.

C. Discussion on the Optimal Training

Since the system estimator is selected in order to optimize
the final performance metric, one may consider the problem
of selecting optimally the input vectoruexp under a max-
imum energy constraint‖uexp‖

2 ≤ E to serve the same

3discarding the positive scalars and considering again the corresponding
(hermitian) transpositions.



purpose. To optimize the input vector, one should first fix
the system estimator. This is a “complementary” problem
with respect to the approach that we have followed so far.
Suppose that we use either the MVU or the MMSE system
estimators. One can observe that forN = 1 the problem of
selecting optimally the input vector is meaningless. In the
case thatN > 1, fixing for examplef = fMVU one can
observe that again the problem of selecting optimally the
input vector is meaningless. Consider for example the case
of [MSEr

ex (ZF)]0. We then have:

[MSEr
ex (ZF)]0 =

σ2
e

(

E[|θ|2]σ2
u + σ2

e

)

E[|θ|4]‖uexp‖
2 + σ2

eE[|θ|2]
,

which only depends on ‖uexp‖
2. Furthermore,

[MSEr
ex (ZF)]0 is minimized when‖uexp‖

2 = E , which is
intuitively appealing. Therefore, anyuexp with energy equal
to E is an equally good input vector for the MVU estimator.
Thus, for the sameuexp, the MVU estimator is better than
the MMSE.

V. SIMULATIONS

In this section we present numerical results to verify our
analysis. In all figures,θ ∼ CN (0, 1). The SNR during
the experiment highlights how good the system estimate is.
The parameterλ has been empirically selected to be0.1 in
Fig. 2. The two figures that we present in this section aim
at two goals: first, to highlight that indeed the MVU/ML
estimator can be better than the MMSE in finite length
system identification depending on the end-performance met-
ric of interest. And second, to verify that the zeroth order
approximations used in this paper for analysis purposes are
good approximations to the true end-performance metrics for
extracting the necessary conclusions.

Fig. 1 presents the corresponding results for
[MSEr

ex(ZF)]0. The SNR during the experiment has
been set to0 dB, which can be a low operational value
in real world appplications, but useful, e.g., in situations
where energy efficiency is crucial such as in wireless sensor
networks. The experimental length has been set to2 simply
to eliminate the asymptotic efficiency of the ML estimator.
The MVU is the best estimator as proven. This is an
example contradicting what one would expect and verifying
the motivation of this paper.

Finally, Fig. 2 verifies that the zeroth order metrics used
in this paper are good approximations in terms of indicating
the structure of uniformly better estimators than the MMSE.
The SNR during the experiment and the experimental length
are as before. We observe that except for a translation in the
vertical direction, the zeroth order approximations are able to
indicate the relative position of the estimating curves leading
to accurate conclusions about the comparison between them.

VI. CONCLUSIONS

In this paper, end-performance metric system estimator
selection has been investigated. We have shown that the
application-oriented selection is the right way to choose esti-
mators in practice. We have verified this observation based on
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an explanatory end-performance metric of interest, namely,
the excess input estimate MSE. The extracted conclusion is
that the ML/MVU estimators can be better than the MMSE
estimator for particular end-performance metrics of interest.
This invalidates the common belief that the MMSE estimator
is always better than the ML/MVU estimators forany end-
performance metric, if finite length experiments are used for
system identification purposes.

APPENDIX

This section proposes a simplification of the
[

MSEd
ex (ZF)

]

metric for the estimator given in (12)
with a fixed λ. Due to the Gaussianity ofuexp,
[

MSEd
ex (ZF)

]

= ∞ for any f 6= 0 (infinite moment



problem). Using (12), the corresponding metric becomes:
[

MSEd
ex (ZF)

]

reg
= Pr

{

|fHyexp| > λ
}

·

E





(

σ2
u +

σ2
e

|θ|2

)

∣

∣

∣

∣

∣

1−
θ

fHyexp

∣

∣

∣

∣

∣

2

; |fHyexp| > λ





+Pr
{

|fHyexp| ≤ λ
}

·

E





(

σ2
u

λ2
+

σ2
e

λ2|θ|2

)

∣

∣

∣

∣

∣

λ
f
H
yexp

|fHyexp|
− θ

∣

∣

∣

∣

∣

2

; |fHyexp| ≤ λ



 ,

(18)

where ; denotes conditioning and “reg” signifies the use
of the regularized system estimator in (12). Moreover,
Pr

{

|fHyexp| ≤ λ
}

= O(λ2), since by the mean value
theorem this probability is equal to the area of the region
{|fHyexp| ≤ λ}, which is of orderO(λ2), multiplied by
some value of the probability density function of|fH

yexp|
in that region, which is of orderO(1). In addition,

E





(

σ2
u

λ2
+

σ2
e

λ2|θ|2

)

∣

∣

∣

∣

∣

λ
fHyexp

|fHyexp|
− θ

∣

∣

∣

∣

∣

2

; |fHyexp| ≤ λ



 =

(

σ2
u +

σ2
e

|θ|2

)

+

(

σ2
u

λ2
|θ|2 +

σ2
e

λ2

)

−2

(

σ2
u

λ
+

σ2
e

λ|θ|2

)

E

[

ℜ

{

θ∗
fHyexp

|fHyexp|

}]

.

Furthermore, if the SNR during training is sufficiently high
and the probability mass of|fHyexp| is concentrated around
|θ|, then it can be shown that

E





(

σ2
u +

σ2
e

|θ|2

)

∣

∣

∣

∣

∣

1−
θ

fHyexp

∣

∣

∣

∣

∣

2

; |fHyexp| > λ





≈
(σ2

u + σ2
e/|θ|

2)E[|fHyexp − θ|2; |fHyexp| > λ]

E[|fHyexp|
2; |fHyexp| > λ]

.

(19)

The same holds even iffHyexp is a biased estimator ofθ at
high training SNR and|fHyexp| tends to concentrate around
a valueβ bounded away from|θ| (and of course from0).

To show the last claim, we setX = |fHyexp − θ|2 and
Y = |fHyexp|

2. SinceY > λ2, it also holds thatE [Y ] >
λ2. Furthermore, it can be seen that

∣

∣

∣

∣

E

[

X

Y

]

−
E[X ]

E[Y ]

∣

∣

∣

∣

≤
1

λ4
E [|XE[Y ]− Y E[X ]|] . (20)

At high training SNR,X → E[X ] and Y → E[Y ] in the
mean square sense and therefore it can be easily shown that
the right hand side of (20) converges to0. To see this, notice
that the Cauchy-Schwarz inequality yields

1

λ4
E [|XE[Y ]− Y E[X ]|] ≤

1

λ4

(

E
[

|XE[Y ]− Y E[X ]|2
])1/2

=
1

λ4

(

E2[Y ]E[X2] + E[Y 2]E2[X ]− 2E[XY ]E[X ]E[Y ]
)1/2

.

(21)

Since X → E[X ] and Y → E[Y ] in the mean square
sense,E[X2] → E2[X ], E[Y 2] → E2[Y ] andE[XY ] →
E[X ]E[Y ]. For the last case, notice that

|E[XY ]− E[X ]E[Y ]| ≤

√

E
[

|X − E[X ]|2
]

E
[

|Y − E[Y ]|2
]

,

where the last inequality follows again from the Cauchy-
Schwarz inequality. By the mean square convergence ofX to
E[X ] andY toE[Y ] the right hand side of the last inequality
tends to0. Therefore, the right hand side of (21) tends to0.

Moreover, under the high SNR assumption the conditional
expectations can be approximated by their unconditional
ones, since for a sufficiently smallλ their difference is due
to an event of probabilityO(λ2). Therefore,

E





(

σ2
u +

σ2
e

|θ|2

)

∣

∣

∣

∣

∣

1−
θ

fHyexp

∣

∣

∣

∣

∣

2

|; |fHyexp| > λ



 ≈

{

(σ2
u + σ2

e/|θ|
2)E[|fHyexp − θ|2]

E[|fHyexp|
2]

}

+O(λ2). (22)

Combining all the above results yields

[

MSEd
ex(ZF)

]

reg
≈

{

(σ2
u + σ2

e/|θ|
2)E[|fHyexp − θ|2]

E[|fHyexp|
2]

}

+O(1).

(23)
TheO(1) term is not negligible but for sufficiently smallλ
its dependence onf is insignificant. Hence, for a sufficiently
small λ and a sufficiently high SNR during training, mini-
mizing

[

MSEd
ex(ZF)

]

reg
is equivalent to minimizing (11).
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