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1 Hidden Markov Models

Before giving some basic material on Hidden Markov Models (HMM), we look into Markov models.
Markov models describe the evolution of randomly varying systems based on an underlying Markov
assumption, which establishes that future system states given the current state are independent of
any past events. Depending on whether the state is fully observable or not and if the system is
controlled or not the Markov models are:

• Autonomous Systems: Markov chains (if the state is fully observed) and HMMs (if the
state is partially observed).

• Controlled Systems: Markov Decision Processes (if the state is fully observed) and Partially
Observable MDPs or POMDPs (if the system state is partially observable).

HMMs: In full generality, HMMs correspond to partially observable Markov processes of the
form (X,Y ) = {(xn, yn)}n∈Z+ for which only one of the two components is (fully) observable1. The
main purpose of these models is to formalize statistical inference setups for the hidden (unobserved)
component of the given Markov process based on fully observing the remaining component. The
hidden (unobserved) component X is called signal (or state or plant) and the statistical analysis
and inference rely on the observed realization of Y , which corresponds to the observable component
of the Markov process (X,Y ). HMMs correspond to a paradigm of dynamic Bayesian networks
(DBN). DBNs relate temporally ordered random variables, i.e., they describe their statistical
dependencies encoding a natural inference mechanism. They can be used to represent system
dynamics in steady-state. A DBN consists of a series of time slices that represent the state of all
the variables at a certain time t. For each temporal slice, a dependency structure between the
variables at that time is defined, called the base network. Additionally, there are edges between
variables from different slices, with their directions following the direction of time, defining the
transition network. DBNs can model complex multivariate time series, i.e., they can encode the
relationships between multiple time series in the same model.

HMMs in control theory: Let (X,Y ) be a random process on a probability space (Ω,F , P )
taking values in the measurable state space (E1×E2, E1×E2) (E1×E2 is the state space, E1 is the
signal state space and E2 is the observation state space) and generated by the stochastic recursion:

xn+1 = g(xn, yn, ηn+1)

yn+1 = h(xn, yn, ηn+1), n ≥ 0 (1)

1Although usually in statistical literature uppercase letters are used to represent random variables, here we use
lowercase letters to be in accordance with our notation in previous files.
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with initial condition (x0, y0) independent of {ηn}n∈Z+ and g, h measurable functions. The sequence
{ηn}n∈Z+ is assumed i.i.d. and is called innovation process or driving noise of the system.
Moreover, the pair of equations given by (1) is called state space representation of (X,Y ) and
often defines the time evolution of a physical system. It can be easily seen that the process (X,Y )
generated by (1) satisfies the Markov property.

Note: Neither X nor Y have to be Markov processes individually.
The most typical scenario of (1) corresponds to the case where the dynamics of X are not

affected by Y , i.e,

xn+1 = g̃(xn, ξn+1)

yn+1 = h̃(xn) + εn+1 or more often yn = h̃(xn) + εn, (2)

where {ξn}, {εn} are independent i.i.d. sequences (consider ηn = [ξn, εn] in this setup and appro-
priate definitions of g, h in (1) in terms of g̃ and h̃, respectively). The most notable example of
such systems is the linear Gaussian system, where g̃(xn, ξn+1) = Axn + ξn+1 and h̃(xn) = Bxn
(A,B are either scalars or matrices) with {ξn}, {εn} being independent i.i.d. Gaussian sequences,
independent of (x0, y0). Moreover, (x0, y0) is itself a Gaussian vector. We recall here that the
Gaussian distribution is stable under affine transformations and therefore, (X,Y ) is a Gaussian
process in this setup.

Finally, in the most frequently encountered scenario (2), X is Markov on its own but not
necessarily Y .

HMMs in Information Theory and Communications: An HMM (X,Y ) corresponds to
a basic abstraction of a communication channel by assuming a Markovian source represented by X
and a discrete (memoryless) channel whose output process is represented by Y . The alphabet of X
is assumed finite, while Y can either have a finite alphabet as well or it can be continuous-valued.
The underlying statistical inference setup in this scenario consists of two stages: the first stage is
called system identification and corresponds to inferring underlying system parameters such as the
transition matrix of the Markov source and some channel related parameters which characterize
the emitting probabilities of the channel. The second stage corresponds to using the inference
outcome from the previous stage and the observation process Y to decide in the best possible way
the transmitted symbols in X. More precisely, after a system identification phase in which the
source transition probabilities and the statistical description of the channel are identified, the goal
is typically to infer the transmitted symbol xn given the observation path in Y up to time n.

HMMs in Statistical Signal Processing: In signal processing literature, signals are usually
assumed to be stationary times series with rational power spectral densities. The typical model is
the following autoregressive-moving–average (ARMA) model, denoted by ARMA(N,M):

xn =

N∑
i=1

aixn−i +

M∑
j=0

bjηn−j , ∀n ≥ max{M,N}

with {ηn} being an i.i.d. sequence and the coefficients being deterministic constants (b0 = 1).
Suppose that xn is observed in white noise via yn = h̃(xn) + εn. In signal processing parlance, yn is
a measurement of xn, where xn is distorted by a nonlinear memoryless sensor or channel h̃(·) and
is corrupted by additive noise. Let X ′ be the random process with generic term

x′n = [xn, xn−1, . . . , xn−N+1, ηn, ηn−1, . . . , ηn−M+1]
T .
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Then, X ′ is a Markov process and the pair (X ′, Y ) forms an HMM.
Some notation: Let (X,Y ) be an HMM. Suppose that X is a finite state Markov chain

with state space E1. We denote the corresponding transition matrix by P = [Pij ] and the initial
distribution by π0. The probabilistic structure of Y is described either by an observation density
function Oxy = p(yn = y|xn = x) (continuous-valued observations) or by an observation mass
function Oxy = P (yn = y|xn = x) (discrete-valued observations). Often in applications, Y takes
values in a finite observation space2 E2.

1.1 Filtering

Given an HMM (X,Y ) defined on the measurable state space (E1 × E2, E1 × E2), filtering is the
problem of computing the conditional distribution

πn(A) = P (xn ∈ A|y1, y2, . . . , yn) , A ∈ E1.

This conditional distribution is called filter. Computing the filter solves the problems of estimating
the hidden process optimally in the mean square or maximum a posteriori senses.

Focusing on finite state HMMs specified by the triplet (π0, P,O), the signal process X is assumed
to be a Markov chain with state space E1 = {1, 2, . . . , |E1|}, transition matrix P = [Pij ] with
Pij = P (xn+1 = j|xn = i) and initial measure π0. As mentioned earlier, the observation likelihoods
are denoted by Oxy. Since E1 is finite with cardinality |E1|, πn is the pmf

πn(i) = P (xn = i|y1, y2, . . . , yn), i ∈ E1.

Let πn = [πn(1), . . . , πn(|E1|)]T and

Oyn = diag(O1yn , O2yn , . . . , O|E1|yn),

where diag(·) denotes a diagonal matrix with main diagonal entries the corresponding arguments.
Then, filters at successive time instants are computed by the recursion

πn+1 =
Oyn+1P

Tπn

1TOyn+1P
Tπn

, (3)

which is initialized by π0. Here, 1 denotes the |E1| × 1 all-ones vector.

2 POMDPs

POMDPs are controlled HMMs. An appropriate version of recursion (3) produces the filter sequence
{πn}. The filtered distribution πn is called belief state in the context of POMDPs and it is used
by the POMDP controller to choose the next action. Since πn contains real (nonnegative) valued
entries for any n, a POMDP is equivalent to a continuous-state MDP with underlying states the
beliefs.

Focusing on the finite horizon scenario and assuming finite state and action spaces, the key
ingredients of a POMDP model are:

• xn is the state of the underlying Markov chain at time n taking values in E1 = {1, 2, . . . , |E1|},
2Sometimes in the literature, Oxy for finite-valued observations are called symbol probabilities.
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• un is the control or action or decision variable at time n taking values in U = {1, 2, . . . , U},

• yn is the (noisy) observation of xn taking values in the observation space E2, which can be
finite with cardinality |E2| or continuous-valued,

• P (u) is the |E1|×|E1| transition matrix of the underlying Markov chain X, when the control
action takes the value u, i.e., Pij(u) = P (xn+1 = j|xn = i, un = u),∀(i, j) ∈ E1 × E1,

• O(u) is the observation likelihood matrix with

Oxy(u) = P (yn = y|xn = x, un−1 = u) or Oxy(u) = p(yn = y|xn = x, un−1 = u),

• c(xn, un) is the incurred cost for state xn and action un,

• cN (xN ) is the terminal cost.

Note: The observation likelihood matrix is action-dependent. This corresponds to a con-
trolled sensing feature. Other terms for this feature are sensor scheduling, measurement control
or active sensing. In signal processing parlance, this feature corresponds to the so-called sensor-
adaptive signal processing with applications in adaptive radar (allocate more resources to more
critical targets), cognitive radio (how to sense the radio spectrum for available channels), etc. In
plain words, the controller can adjust the accuracy of the measurements by choosing less noisy
sensors (or sensing modes) at particular time instants based on un, but with higher measurement
cost though. Clearly, this controlled sensing feature may be absent from a POMDP model with
the observation likelihoods being action-independent. Finally, although we call the measurement
control a “controlled sensing” feature of a POMDP, the reader should be aware of the fact that
the term controlled sensing in the literature usually corresponds to problems where the action only
affects the observation distribution and not the dynamics of the underlying Markov chain.

As in the case of finite horizon MDPs, let µ = {µ0, µ1, . . . , µN−1} denote a policy. Then, the
goal is to solve the problem:

min
µ
JµN (π0), (4)

where

JµN (π0) = E

[
cN (xN ) +

N−1∑
k=0

c(xk, uk)

∣∣∣∣∣π0
]

and π0 is the initial measure of the underlying Markov chain. The optimal policy corresponds to
µ∗ = arg minµ J

µ
N (π0) for any initial distribution π0 and may not be unique. Also, as we describe

in the next section, a POMDP is equivalent to a continuous-state MDP and therefore, it suffices
to consider only deterministic policies µ.

2.1 Belief State Formulation

We recall that in the MDP framework, un = µ∗n(xn). In the POMDP context,

un = µ∗n(Fn), Fn = {π0, u0, y1, . . . , un−1, yn} (5)
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and the size of Fn increases with n. To implement the controller, it is desirable to replace Fn with
a sufficient statistic that does not grow in size with time n. Such a sufficient statistic for Fn is πn.
Let πn be the |E1| × 1 vector with generic element the posterior probability

πn(i) = P (xn = i|Fn).

The vector πn is called belief state or information state at time n and it is updated over time
via (3) as follows:

πn+1 =
Oyn+1(un)P T (un)πn

1TOyn+1(un)P T (un)πn
, Oyn+1(un) = diag(O1yn+1(un), . . . , O|E1|yn+1

(un)). (6)

Additionally, define the cost vectors

c(u) = [c(1, u), c(2, u), . . . , c(|E1|, u)]T and cN = [cN (1), cN (2), . . . , cN (|E1|)]T .

The following key result can be proved:

Theorem 1: For the finite state-action finite horizon POMDP considered in the beginning of
Section 2, assuming also finite observations:

1. The optimal cost Jµ
∗

N (π0) for any given π0 is achieved by deterministic policies µ∗ = {µ∗0, . . . , µ∗N−1}
with un = µ∗n(πn) for any n.

2. µ∗ can be recovered via the following Bellman’s backward recursion: For any πN , set JN (πN ) =
cTNπN . For k = N − 1, . . . , 0 compute:

Jk(π) = min
u

c(u)Tπ +
∑
y∈E2

Jk+1

(
Oy(u)P T (u)π

1TOy(u)P T (u)π

)
1TOy(u)P T (u)π

 ,

µ∗k(π) = argmin
u

c(u)Tπ +
∑
y∈E2

Jk+1

(
Oy(u)P T (u)π

1TOy(u)P T (u)π

)
1TOy(u)P T (u)π

 .

Then, for any initial distribution π0, J
µ∗

N (π0) corresponds to J0(π0) of the above recursion
and µ∗ = {µ∗0, . . . , µ∗N−1} is an optimal policy for the problem.

Remarks:

1. The above theorem shows that there is a DP formulation to solve POMDPs based on belief
states.

2. The DP recursion is intractable in practice, since it has to be evaluated for any πN , π in the
probability simplex.

3. Complexity of MDPs and POMDPs: MDPs in all their variants (finite horizon, infi-
nite horizon discounted and infinite horizon average cost) are solvable in polynomial time
by Dynamic Programming (finite horizon problems), linear programming, or successive ap-
proximation techniques (infinite horizon). It has been shown that they are complete for P

1-5



(P is the class of all decision problems that can be solved by a deterministic (single-tape or
multi-tape) polynomial-time Turing machine), and therefore most likely unsolvable via par-
allelism. On the other hand, the deterministic versions of these three variants can be solved
in parallel. Moreover, POMDPs (in the complexity discussion here, it may be helpful to
think of POMDPs as “degraded MDPs”, i.e., as MDPs with partially observed states) have
been shown to be PSPACE-complete (PSPACE is the class of all decision problems solvable
by a Turing machine in polynomial space with respect to the input size), and hence, even
less likely to be solved in polynomial time than NP-complete problems. Finally, deciding
whether the optimal policy in an unobserved MDP (open-loop control problem) has expected
cost (undiscounted, over a finite horizon) equal to zero is an NP-complete problem. In other
words, MDPs with no observations are NP-complete.

4. The factors 1TOy(u)P T (u)π replace the transition probabilities in the DP algorithm for
MDPs.

5. In control theory, such setups are often called problems with imperfect state information.

Despite, the mentioned difficulties, the following extraordinary result is of interest:

Theorem 2: Consider the finite horizon POMDP discussed so far (finite state, finite action
and finite observation spaces). Then:

1. Jk(π) is piecewise linear and concave with respect to π, i.e.,

Jk(π) = min
g∈Gk

gTπ,

where Gk is a finite set of vectors at time k and GN = {cN}. Therefore, Jk(π) has a finite-
dimensional characterization.

2. At time k, the simplex can be partitioned into at most |Gk| convex polytopes, each polytope
being Pr = {π : Jk(π) = gTr π}. Then, the optimal policy consists of a single action per
polytope, i.e., ∀π ∈ Pr

µ∗k(π) = u∗r .

Therefore, the optimal policy has a finite-dimensional characterization as well.

We finally note that algorithms for solving such POMDPs rely on the provided finite-dimensional
characterizations.

2.2 Brief Reference to Algorithms for Solving POMDPs

We will not proceed any further with the theory and algorithms for POMDPs. The interested
reader is referred to the relevant literature. We note here that POMDPs are heavily motivated by
applications in path planning, human–robot interaction and in controlled sensing where one wishes
to penalize uncertainty of the estimates.
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For finite horizon POMDPs, optimal algorithms are based on exact value iteration and are
computationally intractable in general. Known schemes are the Incremental Pruning algorithm,
Monahan’s Algorithm and Witness algorithm.

Suboptimal algorithms based on value iteration include Lovejoy’s algorithm and point-based
value iteration algorithms such as SARSOP. Moreover, the belief compression and the open loop
feedback control algorithms are two additional examples.

Finally, there are algorithms exploiting structural results for POMDPs and heuristics based
on MDP solutions. Policy gradient approaches for POMDPs exist, as well as discrete stochastic
optimization-based search algorithms for estimating the best policy from a finite set of possible
policies.

3 Linear Quadratic Regulation

The linear quadratic regulator (LQR) problem is one of the most fundamental control problems.
The LQR is an important part of the solution to the Linear Quadratic Gaussian (LQG) problem.

3.1 Deterministic Setup

Focusing on the discrete-time deterministic version of the problem, consider the time-homogeneous
discrete-time system:

xk+1 = Axk +Buk,

xk ∈ Rn, A ∈ Rn×n, uk ∈ Rm, B ∈ Rn×m

and assume that the system state is fully observable3. Let the cost function be:

J = cN (xN ) +
N−1∑
k=0

c(xk, uk),

where the one-stage and terminal costs in matrix-vector form are:

c(x, u) =

[
x
u

]T [
R ST

S Q

] [
x
u

]
,

cN (x) = xTWNx.

All the involved quadratic forms are assumed positive semi-definite (� 0) and Q � 0, where � 0
denotes positive definiteness. The above is a model for regulation of (x, u) to the point (0, 0). The
assumptions on the involved matrices ensure that the cost function is convex and has a unique
minimum.

Value Function: The value function for this problem is

Jk(x) = xTWkx, k ≤ N.

Optimal Control: The optimal control for this problem is linear in the system state:

u∗k = K∗kxk, k < N

3Controllability or stabilizability, etc. will not be discussed here.
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with
K∗k = −

(
Q+BTWk+1B

)−1 (
S +BTWk+1A

)
, k < N.

Riccati Recursion: Wk satisfies the Riccati (backward) recursion:

Wk = R+ATWk+1A− (ST +ATWk+1B)(Q+BTWk+1B)−1(S +BTWk+1A), k < N.

Remark: Observe that the optimal control is of the form u∗k = µ∗k(xk).

Infinite-Horizon LQR: Suppose that N =∞ (clearly, no terminal cost exists in this setup).
Then, one may run the Riccati recursion up to convergence, in which case

W∞ = R+ATW∞A− (ST +ATW∞B)(Q+BTW∞B)−1(S +BTW∞A).

This equation is called algebraic Riccati equation and W∞ is the unique positive definite solution
to this equation. The optimal control in this case is

uk = K∗∞xk = −
(
Q+BTW∞B

)−1 (
S +BTW∞A

)
xk.

Remark : Observe that the optimal control is of the form u∗k = µ∗(xk).

3.2 Stochastic Fully Observed Setup

Consider white noise disturbances in the system state:

xk+1 = Axk +Buk + ξk.

{ξk} is a white noise sequence such that E[ξk] = 0,∀k, E[ξkξ
T
k ] = Ξ and E[ξsξ

T
k ] = 0, s 6= k. The

system state is fully observable at every time instant.
Optimality equation: The optimality equation for this problem is:

Jk(x) = inf
u
{c(x, u) + Eξ[Jk+1(Ax+Bu+ ξ)]} , k < N,

with JN (x) = xTWNx as before.
To solve the optimality equation, the solution Jk(x) = xTWkx+ αk is tried, where Wk follows

the Riccati recursion provided earlier. It turns out that αk =
∑N

r=k+1 tr(ΞWr).
Optimal Control: The optimal control for this problem corresponds to linear state feedback:

u∗k = K∗kxk, k < N

with K∗k as in the noiseless scenario.
Remark: Observe that the optimal control is of the form u∗k = µ∗k(xk).
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3.3 Stochastic Setup with Imperfect State Information

Consider now the state-space model:

xk+1 = Axk +Buk + ξk,

yk = Cxk−1 + εk−1,

yk ∈ Rp, C ∈ Rp×n, εk ∈ Rp, p < n (typically)

with the remaining model parameters as before. The system noise is again considered white with

E

([
ξk
εk

])
= 0, ∀k, cov

([
ξk
εk

])
=

[
Ξ L
LT M

]
, ∀k, E

([
ξk
εk

] [
ξs
εs

]T)
= 0, k 6= s.

Also, x0 ∼ π0 for a given initial distribution π0.
LQG model: x0 ∼ N (µ0, V0), where µ0, V0 are known and the system noise is Gaussian.
Value Function: Let Fn be as in (5). The optimal value function for this problem is:

Jk(Fk) = E[xTkWkxk|Fk] +
N−1∑
r=k

E[∆rW̃r∆r|Fk] + αk, JN (FN ) = E[xTNWNxN |FN ],

with all the involved variables as in the previous scenarios, ∆k = xk − E[xk|Fk] and W̃k = R +
ATWk+1A−Wk with W̃k � 0.

Optimal Control: In this case,
u∗k = K∗k x̂k,

where K∗k is as before and x̂k = E[xk|Fk].
Remark: Observe that the optimal control is of the form u∗k = µ∗k(πk).

Certainty Equivalence: The optimal control u∗k is exactly the same as it would be if all
unknowns were known with values equal to their conditional means based on the observations up
to time k. This fact is named “certainty equivalence”.

Separation Principle: It turns out that the distribution of the estimation error ∆k does not
depend on {u0, u1, . . . , uk−1}. Therefore, the problems of optimal (state) estimation and optimal
control can be decoupled. This decoupling is called “separation principle” of linear quadratic control
design.

LQG problem: Under Gaussianity, optimal state estimates x̂k are obtained iteratively via
Kalman filtering.

Kalman filtering: The Kalman filter computes recursively the filter, which is Gaussian, i.e.,
the posterior state distribution. The optimal system state estimate at every time instant corre-
sponds to the mean value of this distribution (conditional or posterior mean).

Double Separation Principle: Suppose that except state control uk, we also have observation
control ũk. Then, it can be shown that the determination of the optimal state control policy can
be separated from the determination of the optimal measurement control policy.
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Sample Complexity of LQR with unknown dynamics: Recently, there have been ap-
proaches to address the sample complexity of the LQR problem in the case of unknown dynamics.
A model is first estimated based on few experimental trials and the corresponding error of the
estimated model from the true model is also inferred. Then, a controller is designed using both the
model and uncertainty estimates. The system identification setup relies on n experiments of the
following form: Starting at some given initial state x0, the dynamics are evolved for a time horizon
N using any control sequence {u0, u1, . . . , uN−1}. The resulting states {x1, x2, . . . , xN} are assumed
perfectly observable. Finite sample uncertainty bounds for a pre-specified level of confidence exist
as well as estimates on the achievable LQR cost for a pre-specified confidence level as functions of
the model dimensionality and the number of independent trials n (samples) used to infer the model
and the corresponding uncertainty.
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