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1 Reinforcement Learning

Reinforcement learning is a branch of artificial intelligence that formalizes a trial-and-error phi-
losophy of learning. More precisely, an agent interacts over time with a stochastic environment
and learns through this interaction. At every time instant, the agent observes the current state of
the world and selects an action. Based on the selected action, the agent receives a reward from
the environment (or alternatively pays a cost). The RL problem is then to design an agent that
selects actions according to some optimization criteria. Since the trial-and-error approach is driven
by the received rewards, possible optimization criteria correspond to maximizing some form of ex-
pected long-term reward (or minimizing some form of expected long-term cost). In other words, RL
corresponds to a disciplined approach for sequential decision making. From the previous trial-
and-error description, one may conclude that RL algorithms are motivated by natural processes
behind human decision making, in the sense that rewards or costs provide positive or negative rein-
forcement for particular actions. Any algorithm for finding an optimal agent is a possible solution,
or RL algorithm, to the RL problem.

Various classes of methods for sequential decision making to maximize the sum of received
rewards exist. In increasing sophistication level, a first class corresponds to the multi-armed
bandits, which apply to instances where there is no contextual information available to guide
the decision making. A second class corresponds to the contextual bandits, where contextual
information is taken into account. Moreover, there are RL algorithms that can handle more general
setups than the aforementioned classes.

We finally note that when designing an RL algorithm, computation time considerations in
attaining the optimal agent are crucial. More explicitly, an RL algorithm that can find a solution
in less time than a different algorithm is more efficient. RL problems are typically organized in
repeated episodes either until a solution is found or timeout occurs. Therefore, more efficient
algorithms require less episodes to yield a solution. We will consider algorithmic efficiency in the
described sense in subsequent lectures.

2 Differences of RL from other Machine Learning methods

RL has certain differences from other optimization paradigms. First, RL is unsupervised. In
other words, there are no labeled data pointing to best actions. The decision making is driven
by a reward signal, which reinforces certain actions more than others. Also, action sequencing
is very important in RL, since it determines the realized trajectory of the agent. Another major
characteristic of the RL paradigm is that an action taken at a particular time instant may heavily
impact the reward signal after many subsequent steps. This corresponds to what is called delayed
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feedback. Finally, the actions of the agent affect the realized trajectory and by extension the
observations made.

3 Connection to Control Theory

Control theory studies dynamical systems and their optimization over time. Often, certain system
variables can be unknown or imperfectly observed and the system evolution may be deterministic
or stochastic. Focusing on discrete time, the system state xk ∈ X of a deterministic dynamical
system obeys the following plant equation or law of motion:

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1. (1)

Here, k corresponds to the time index and

• uk ∈ U is the control or decision variable or action selected at time k,

• N is the time or planning horizon corresponding to how many decisions are made or actions
are taken,

• fk is a function describing the state evolution (can be time-invariant).

At time k, the control action is constrained to Uk(xk) ⊂ U , where Uk(xk) 6= ∅. We consider the
class of admissible control policies (or control laws)

µ = {µ0, µ1, . . . , µN−1}, (2)

where uk = µk(xk) ∈ Uk(xk). Given an initial state x0 and an admissible policy µ = {µ0, µ1, . . . , µN−1},
(1) becomes:

xk+1 = fk(xk, µk(xk)), k = 0, 1, . . . , N − 1. (3)

In addition to the plant equation, a principal feature of a control problem is a cost function
that is additive over time (separable cost). Assuming that the admissible policy µ is applied and
the cost incurred at time k is ck(xk, uk), the total cost for the considered horizon and for a fixed
initial state x0 is

JµN (x0) = cN (xN ) +
N−1∑
k=0

ck(xk, uk),

where cN (xN ) is the terminal cost. Our goal is then to solve the following problem:

min
µ∈M

JµN (x0). (4)

Here, M is the set of all admissible control laws. The optimal policy is denoted by µ∗. Alter-
natively, one may consider the problem of optimally selecting the sequence of control variables
u0, u1, . . . , uN−1 in a such a way that the total cost cN (xN ) +

∑N−1
k=0 ck(xk, uk) is minimized. We

note here a subtle distinction: Although (4) corresponds to an optimization over the Cartesian prod-
uct of some function spaces, formalizing this problem as a minimization over the control variables
u0, u1, . . . , uN−1 corresponds to a conventional optimization formulation.
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Optimality Principle: By choosing a sequence of controls, we generate a trajectory. Consider
any point on an optimal trajectory. Then, the remaining trajectory is optimal for the problem
initiated at that point. More formally, consider an optimal control policy µ∗ = {µ∗0, µ∗1, . . . , µ∗N−1}
and assume that we are in state xk at time k. Suppose we wish to minimize the cost-to-go from
time k to time N , namely cN (xN )+

∑N−1
r=k cr(xr, ur). Then, the subpolicy {µ∗k, . . . , µ∗N−1} is optimal

for this subproblem.

Formalizing the optimality principle, we are led to the Dynamic Programming (DP) algo-
rithm:

Consider any initial state x0. Define the backward recursion

JN (xN ) = cN (xN ) (5)

Jk(xk) = inf
uk∈Uk(xk)

{ck(xk, uk) + Jk+1(fk(xk, uk))} , k = N − 1, N − 2, . . . , 0. (6)

Then, the optimal cost Jµ
∗

N (x0) of problem (4) corresponds to J0(x0) of the above recursion.
Moreover, if u∗k = µ∗k(xk) minimizes the right-hand side of (6) for every xk and k, then an
optimal policy is µ∗ = {µ∗0, µ∗1, . . . , µ∗N−1}.

Eq. (6) is often called optimality equation or DP equation or Bellman equation.
We now note that a discrete-time stochastic control system is characterized by a plant equation

of the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1, (7)

where wk is a noisy variable or random disturbance. Suppose that wk is drawn from Pk(·|xk, uk),
which depends explicitly on xk, uk but not on w0, . . . , wk−1. To accommodate any source of ran-
domness we may allow in the problem, the optimal control problem is defined on the basis of
optimizing the expected cost

JµN (x0) = E

[
cN (xN ) +

N−1∑
k=0

ck(xk, uk, wk)

∣∣∣∣∣x0
]
, (8)

where the expectation is with respect to the joint distribution of all the involved random variables
given x0. In this case, the optimality principle and the DP recursion are still valid, by taking the
expectation into account when it is needed. Bellman’s equation in this case becomes:

Jk(xk) = inf
uk∈Uk(xk)

{E [ck(xk, uk, wk) + Jk+1(fk(xk, uk, wk))|xk, uk]} , k ≤ N − 1. (9)

Difference from RL: {fk} is a known function sequence. In other words, the state transitions
of the system can be accurately modeled.

Note: Although a µ∗ for both deterministic and stochastic systems is tied to x0, it is often the
case that such a µ∗ is optimal for all initial states x0.

Stochastic optimal control problems of interest to us are those that can be modeled as Markov
Decision Processes with finite state and action spaces.
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4 Markov Decision Processes

To rigorously formulate RL problems, the framework of Markov Decision Processes (MDP) is
used. MDPs correspond to the stochastic decision making models underlying RL problems. In RL,
the underlying model is either unknown or rather complicated (e.g., too large) to solve in order to
find an optimal policy. In MDPs, the system state summarizes all the past information. Select-
ing the system state is therefore a key component of the modeling process. The aforementioned
summary of past information is encapsulated in the Markov property, which corresponds to the
conditional independence of the future from the past given the current state.

To make the discussion a bit more precise, an MDP is a controlled process characterized by
Markovian dynamics and a separable cost function. Focusing on the basic case of finite state finite
horizon MDPs, the key ingredients are:

• X is the state space with finite cardinality X, i.e., X = {1, 2, . . . , X},

• xk is the state of the controlled Markov chain at time k = 0, 1, 2, . . . , N ,

• U is the control or action or decision space with finite cardinality U , i.e., U = {1, 2, . . . , U},

• uk ∈ U or uk ∈ U(xk) ⊂ U or uk ∈ Uk(xk) ⊂ U is the action taken at time k,

• Pk(u) is a X ×X transition probability matrix with elements

Pk,ij(u) = P (xk+1 = j|xk = i, uk = u), for i, j ∈ X and u ∈ U .

In this course, we will focus on time-homogeneous MDPs, and therefore the corresponding
transition probabilities will be time-invariant (denoted by Pij(u)). The corresponding transi-
tion matrix for each action u will be denoted by P (u). We also note here that P = [P (u)] is
a third-order tensor, while if the transition probabilities are time-varying, then P = [Pk(u)]
is a fourth-order tensor.

• ck(i, u) or ck(i, u, j) is the one-stage cost when the system is at state i ∈ X at time k, the
action u ∈ U is taken by the agent and the system transitions to state xk+1 = j,

• cN (i) is the terminal cost for each state i ∈ X ,

• ρ is the initial state distribution such that x0 ∼ ρ.

Note: In the context of MDPs, a separable cost or reward function is optimized. When a cost
function is optimized, we end up with a minimization problem defined on the basis of one-stage
costs ck(i, u) or ck(i, u, j). When a reward function is optimized, we end up with a maximization
problem with one-stage rewards rk(i, u) or rk(i, u, j). In both cases, xk = i, uk = u and xk+1 = j.
In this course, we will mostly assume that the one-stage cost or reward signals and the transition
probabilities Pk,ij(u) are time-invariant (except for possible discounting factors for the cost or
reward signals) and we will drop the temporal index k.

Thus, an MDP model (in full generality) is the 6-tuple

(X ,U , Pk,ij(u), ck(i, u), cN (i), ρ) i, j ∈ X , u ∈ U , k = 0, 1, . . . . , N − 1.
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Moreover, in the context of MDPs we require perfect state information. In other words, the state
xk is fully observable at time k when the agent chooses the action uk. Therefore, at time k the
following information is available to the decision-maker (agent or controller):

Fk = {x0, u0, x1, u1, . . . , xk−1, uk−1, xk}.

The behavior of the agent is modeled by a policy. At time k, the agent uses all the available
information in Fk to decide the action uk. Mathematically, this is described by the mapping
uk = µk(Fk), where µk : Fk → U (or µk : Fk → Uk(xk)) is the policy or strategy or decision rule
at time k. As in the context of control theory, a policy µ corresponds to the sequence of decision
rules used by the agent up to time N − 1:

µ = {µ0, µ1, . . . , µN−1}.

Episodic scenario: In the finite time horizon scenario that we have considered so far, the
planning window is up to time N , where N is deterministic. In stochastic optimal control and
in RL, N can be a stopping time (random variable). Although N = ∞ is a valid choice and
corresponds to infinite horizon problems, the most usual assumption in practice is that

N <∞ almost surely (a.s.),

if the underlying problem is expected to have an end in finite, but otherwise random time N . With
this assumption, the aggregate trajectory x0, u0, c0, x1, u1, c1, . . . , xN−1, uN−1, cN−1, xN is called
episode. In plain words, episode is the simulation length from an initial state to some terminal
state. For example, when playing chess an episode can be considered the entire game, which ends if
the player wins, loses or achieves a draw. Since it is unknown beforehand when the terminal state
will be reached, the planning horizon N is a random variable.

Goal: Obtain an optimal policy µ∗ by solving

µ∗ = arg min
µ
JµN (x0), (10)

where JµN (x0) is given by JµN (x0) = E
[
cN (xN ) +

∑N−1
k=0 ck(xk, uk)

∣∣∣x0].
Note: If X and U are finite, then the minimum always exists. Also, µ∗ may not be unique. For

instance, if ck(x, u) is a constant for all pairs (x, u), then all policies are optimal.

As mentioned earlier, an MDP is an instance of a stochastic control problem. Since at time k,
uk = µk(Fk), this formalizes the notion of closed loop control in such problems. In contrast to open
loop optimization, here uk affects xl, ul and cl for any l > k. In open loop problems, the control
variables u0, u1, . . . , uN−1 are all determined at time 0.

Finally, (stochastic) DP programming provides the optimal solution to an MDP. We repeat
Bellman’s algorithm here using the introduced notation for clarity (assuming deterministic costs):
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For any state i ∈ X , let JN (i) = cN (i). Define the backward recursion

Jk(i) = min
u∈U
{ck(i, u) +

∑
j∈X

Pk,ij(u)Jk+1(j)} (11)

µ∗k(i) = arg min
u∈U
{ck(i, u) +

∑
j∈X

Pk,ij(u)Jk+1(j)}, k = N − 1, N − 2, . . . , 0. (12)

Then, for any initial state x0, the optimal cost Jµ
∗

N (x0) of problem (10) corresponds to J0(x0)
of the above recursion and an optimal policy corresponds to µ∗ = {µ∗0, µ∗1, . . . , µ∗N−1}.

The above algorithm has been presented in full generality (time-varying costs and and transition
probabilities) to demonstrate the power of DP.

Difference from RL: Consider the time-invariant case. In the RL framework, the transition
probabilities Pij(u) are unknown.

Note: In the context of stochastic adaptive control, there are methods which estimate the
unknown transition probabilities and update the control policy at the same time. Alternatively,
algorithms that do not require explicit knowledge of these probabilities in determining an optimal
policy may be employed. This second class of methods, usually called simulation-based meth-
ods, correspond to the main body of the RL literature. Through the trial-and-error methodology
and the reinforcement of actions with higher rewards or lower costs, RL algorithms determine the
policy by simulating a trajectory through parts of the state space, which are more probable. In
other words, no effort is wasted in low-probability parts of the state space.

Possible Policies: The most general form of policy µ corresponds to randomized mappings of
the form uk ∼ µk(Fk), where µk is a probability distribution. Therefore, uk is a randomized action
dependent on all past history. Clearly, this set of policies contains all possible policies of the form
uk = µk(Fk), where µk is a deterministic mapping. We denote this set as GP and we refer to such
strategies as general policies. A subset of GP corresponds to randomized policies of the form
uk ∼ µk(xk) (i.e., again µk is a probability distribution). We denote this set as RMP and we refer
to such strategies as randomized Markovian policies. Clearly, this set of policies contains all
possible policies of the form uk = µk(xk), where µk is a deterministic mapping. We denote this set
as DMP and we refer to such strategies as deterministic Markovian policies. Therefore, to
summarize,

DMP ⊂ RMP ⊂ GP.

It turns out that a solution µ∗ of problem (10) lies always in DMP. To see this fact, we note
that DP programming gives an explicit construction of an optimal policy µ∗ and this policy lies in
DMP by construction. This implies that the expectation in the definition of JµN (x0) for problem
(10) is only with respect to {x1, x2, . . . , xN} for a given x0.

5 Bandit Processes and the Multi-Armed Bandit Problem

Multi-armed bandit (MAB) problems are a class of sequential resource allocation problems con-
cerned with allocating one or more resources among several alternative (competing) projects.
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Bandit Process: A bandit process (single-armed) is described by a machine or an arm or a
project and is characterized by the trajectory {x0, r0, x1, r1, . . . , xn, rn, . . .}, where xn is the state
of the machine after it has been operated n times and rn is the reward provided by the nth usage
of the machine. In its basic setup, a bandit process is a special type of an MDP with a binary
action space U = {0, 1}, where the control action u = 0 can be thought as “freeze” and the control
action u = 1 can be thought as “continue”. For uk = 1, the reward rk = r(xk) is obtained and
the system transitions to state xk+1 according to xk+1 ∼ P (·|xk, uk = 1). In full generality, the
state transitions can instead of a transition matrix be modeled as xk+1 = fk(x0, x1, . . . , xk, wk),
where fk(·) is known and {wk}k≥0 is a sequence of independent random variables that are also
independent of x0 and have a known probabilistic description. Therefore, in the general setup, a
bandit process is not necessarily a Markov process.

The Multi-Armed Bandit problem (classical setup): A multi-armed bandit (MAB) pro-
cess (m-armed) is a family of m independent single-armed bandit processes. The system has a
single controller. At every time instant the controller chooses to operate a single machine, while
all other machines are frozen. Assuming that l = 1, 2, . . . ,m is the machine index, each machine is
characterized by the trajectory

{xl(nl(0)), rl(xl(nl(0))), xl(nl(1)), rl(xl(nl(1))), . . . , xl(nl(t)), rl(xl(nl(t))), . . .}t=0,1,2,..., l = 1, . . . ,m,

where nl(t) denotes the number of times machine l has been chosen. The action space U corresponds
to vectors u = (u1(t), u2(t), . . . , um(t)), which are the row vectors of an m × m identity matrix
(natural basis):

U = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

This is due to the fact that a single machine is operated at every time instant, while the rest remain
frozen. The system dynamics are described by:

xl(nl(t+ 1)) =

{
fnl(t)(xl(0), . . . , xl(nl(t)), wl(nl(t))), if ul(t) = 1

xl(nl(t)), if ul(t) = 0
, l = 1, . . . ,m (13)

and

nl(t+ 1) =

{
nl(t) + 1, if ul(t) = 1
nl(t), if ul(t) = 0

, l = 1, . . . ,m. (14)

As before, {wl(t)}ml=1,t≥0 is a collection of independent random variables, which are also independent
from {x1(0), . . . , xm(0)} and their probabilistic description is known. We note here that (13) is
general enough to capture the basic scenario with Markovian dynamics by appropriately specifying
{fnl(t)}

m
l=1. Additionally, each machine produces a reward only when it is operated:

rl(t) =

{
rl(xl(nl(t))), if ul(t) = 1

0, if ul(t) = 0
.

Goal: Consider the basic scenario with Markovian dynamics. The objective is to solve the
following infinite horizon discounted reward problem:

max
µ

E

[ ∞∑
t=0

at
m∑
l=1

rl(t)

∣∣∣∣∣x1(0), . . . , xm(0)

]
, (15)
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over the set of all realizable policies, i.e., policies which at every time instant use only causal
information. For consistency with the previous notation, we set

Jµ(x1(0), . . . , xm(0)) = E

[ ∞∑
t=0

at
m∑
l=1

rl(t)

∣∣∣∣∣x1(0), . . . , xm(0)

]
.

An optimality equation as in the previous sections can be also formalized here.
MABs provide a very rich modeling framework, e.g., clinical trials, portofolio management, etc.
Remarks:

1. MABs are a paradigm of unsupervised learning.

2. The rewards of actions not taken are unknown.

3. Exploration is required to solve (15).

4. MABs are simpler than RL problems, since we know which action is responsible for each
reward. As mentioned earlier, in the RL setup, the impact of a current action may appear
after several time instants in the future (delayed feedback). Therefore, the reward (or cost)
at every time instant may be the aggregate effect of several prior actions.

5.1 Special Case of Interest: Stochastic MABs

Consider a bandit problem with m arms corresponding to m distributions ν1, ν2, . . . , νm, all of
them having support the interval [0, 1]. The support selection is motivated for simplicity reasons.
These distributions are unknown to the agent. Suppose that at time k the agent selects an arm
(distribution) with index Ik (i.e., uk = Ik). She then receives reward rIk,k ∼ νIk . The agent’s goal
is to determine which distribution produces the highest expected reward, while maximizing her
revenue at the same time. Therefore, she needs to determine an optimal policy for this purpose.
The performance measure for a time horizon N corresponds to the cumulative regret, defined
as:

RN = max
i∈{1,2,...,m}

N∑
k=1

ri,k −
N∑
k=1

rIk,k.

We note here that there is a version of the problem in which the time horizon N is unknown
beforehand.

Regret Intuition: The regret is a measure of how much the bandit algorithm (or the agent’s
policy) “regrets” not playing the arm with maximum total reward over the course ofN time instants.
Also the definition of the regret assumes that at every time instant all reward distributions (arms)
ν1, ν2, . . . , νm are sampled, but the agent can only observe the reward produced by her chosen arm.

There are various ways that one may try to minimize the above regret, e.g., in the worst case
or in expectation or with high probability. The stochastic MABs correspond to minimizing the
expected regret:

E[RN ] = E

[
max

i∈{1,2,...,m}

N∑
k=1

ri,k −
N∑
k=1

rIk,k

]
.
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Due to the existence of a maximization inside the expectation, the above performance metric is
difficult to work with. Therefore, the alternative pseudo-regret is the usual objective:

R̄N = max
i∈{1,2,...,m}

E

[
N∑
k=1

ri,k −
N∑
k=1

rIk,k

]
.

Pseudo-regret Intuition: The pseudo-regret is a measure of how much the bandit algorithm
“regrets” not choosing always the arm with the highest expected reward. We note here that for
each distribution ν1, ν2, . . . , νm the expected reward is nothing else but the corresponding mean
value. Additionally, R̄N ≤ E[RN ] always. Therefore, it should be kept in mind that minimizing
or upper bounding R̄N has no explicit implications about the behavior of E[RN ] under the same
bandit algorithm.

Let µ1, µ2, . . . , µm be the mean values of ν1, ν2, . . . , νm, respectively. Then,

R̄N = N max
i
µi −

N∑
k=1

E[µIk ] = N max
i
µi −

m∑
i=1

E[Ni,N ]µi,

where E[Ni,N ] corresponds to the expected number of times arm i will be chosen in the course
of N trials. Minimizing R̄N corresponds to an exploration-exploitation tradeoff : the agent
needs to try all arms sufficiently many times to determine the best one. Nevertheless, any time a
suboptimal hand is chosen, e.g., arm r with µr < maxi µi, a one-step regret is incurred:

∆r = max
i
µi − µr.

Insufficient exploration can lead the bandit algorithm to erroneously decide a suboptimal arm as
the optimal arm. Too much exploration implies that suboptimal hands are played for large fractions
of trials and since N is fixed, an increased regret is incurred.

Note: From the above discussion, it should be intuitively clear that hard problems correspond
to similar looking hands with different mean values.

Lai and Robbins Key Results: They provided policies for which

R̄N = O(logN),

i.e., these algorithms achieve a sublinear pseudo-regret. Lai and Robbins also showed that no
algorithm can lead to a better regret.

Benchmark Algorithm: An algorithm is said to solve the stochastic MAB problem if it
achieves logarithmic pseudo-regret. A scheme that achieves such a regret is the Upper Confidence
Bound (UCB) algorithm. Moreover, an early algorithm used for stochastic MABs, which has
attracted a lot of interest lately, is called Thompson sampling. This algorithm makes use of a
Bayesian approach and has been observed to perform well empirically. Thompson sampling has
been also shown to achieve logarithmic pseudo-regret.

6 Contextual Bandits

The simplest way to think about contextual bandits is to consider them as bandits with partial
information. The usual definition is the following repetitive scheme:
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For t = 1, 2, . . . , N :

1. The environment produces some context xt ∈ X .

2. The controller chooses an action ut = µt(xt).

3. The environment produces the reward rt = rt(ut).

The term “contextual bandits” is equivalent to terms like associative reinforcement learning, asso-
ciative bandits, learning with partial feedback.

Note: The remarks for MABs made at the end of the first part of Section 5 are still valid. The
difference of contextual bandits from MABs is the context xt ∈ X (side information). No xt exists
in MABs.

Although the above small reference to contextual bandits is provided for encyclopedic reasons,
contextual bandits will not be considered in this course.

7 Some Background Material: Descent Optimization Methods

Suppose we want to numerically solve the problem:

min
x∈Rn

f(x).

A well-known algorithm for this task is the steepest descent:

xk+1 = xk − εk∇f(xk).

The sequence {εk}k≥0 corresponds to the stepsizes used by the above algorithm and has to be
judiciously chosen to provide appropriate convergence. Various approaches exist on how to select
the stepsizes, e.g., fixed stepsizes, optimal line search, Armijo rule, etc. A generalization of the
steepest descent is the gradient descent:

xk+1 = xk + εkdk.

Here, we re-use the notation εk for the stepsizes for notational conservatism. For this algorithm to
perform the desired task we require that

∇f(xk)
Tdk < 0, ∀k ≥ 0.

Many machine learning problems can be formulated as optimization problems of the form:

min
x
F (x), (16)

where F (x) = Ey[f(x; y)] with f being a loss function. Here, x corresponds to a model that has to
be inferred and y is some random variable or random vector. In practice, we observe only samples
from distributions that are typically unknown to us. Assuming that we have n i.i.d. observations
{yi}ni=1, which we call training data, F (x) ≈ n−1

∑n
i=1 f(x; yi) and (16) is replaced by:

min
x

1

n

n∑
i=1

f(x; yi). (17)
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This surrogate problem is often said to rely on the empirical risk minimization principle,
which corresponds to a probably approximately correct (PAC) learning algorithm under some
sufficient condition. Examples of loss functions correspond to logistic regression, squared error loss
(linear regression), principal component analysis, neural network loss, Huber loss, etc. Depending
on the choice of f and the domain of x, the optimization problem (17) can be convex (linear and
logistic regression, SVMs, etc.) or nonconvex (e.g., neural networks). Convex problems are easy
to solve, while nonconvex problems arising in machine learning are typically NP-hard. General
gradient methods have to compute or to estimate the gradient:

∇F (x) = ∇Ey[f(x; y)] ≈ 1

n

n∑
i=1

∇xf(x; yi).

For large-scale optimization problems (very large n), the above computation of the gradient per
iteration is cumbersome.

Idea: Stochastic Gradient Descent (SGD): Replace in steepest or gradient descent the
gradient ∇F (x) by

∇xf(x; yj),

where yj is a randomly chosen training datum.
Remarks:

1. Typically, we choose j uniformly at random from the set {1, 2, . . . , n}.

2. A different option is the mini-batch SGD. Here, instead of a single j, a random subset
Ik ⊂ {1, 2, . . . , n} of size m � n is drawn at every iteration and the gradient ∇F (x) is
approximated as

∇F (x) ≈ 1

m

∑
i∈Ik

∇xf(x; yi).

3. Both SGD and mini-batch SGD rely on unbiased estimators of the true gradient:

Ey [∇xf(x; yj)] = ∇F (x), ∀j ∈ {1, 2, . . . , n},

Ey

 1

m

∑
i∈Ik

∇xf(x; yi)

 = ∇F (x), ∀Ik ⊂ {1, 2, . . . , n}.

The mini-batch SGD has lower variance than the SGD, but it is computationally more ex-
pensive.

Convergence: Under the assumption that
∑∞

k=1 εk =∞ and
∑∞

k=1 ε
2
k <∞ the SGD converges

to a local minimum almost surely.

Relevance to MDPs and RL: Gradient descent and SGD characterize the structure of main
algorithms in the MDP/RL framework such as the Q-learning and policy gradient algorithms.
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