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6.1 Introduction

Recall the following stochastic optimization problem

min
x
F (x) = Eξ[f(x, ξ)], (6.1)

where ξ ∈ Rp is a random vector such that ξ ∼ P for some distribution P and f : Rn × Rp → R is a measurable
function. Stochastic Gradient Descent (SGD) can be used to solve this problem by assuming that an i.i.d. sequence
ξ0, ξ1, . . . is observed or that for any x a noisy gradient ∇̂F (x) is available by querying an oracle. In the context of
machine learning, P is unknown and a finite data record {ξ0, ξ1, . . . , ξN−1} is assumed available. In this case, (6.1) is
replaced by the empirical risk minimization problem1:

min
x
F (x) =

1

N

N−1∑
i=0

f(x; ξi). (6.2)

Here, F (x) corresponds to an expected value with respect to the empirical measure N−1
∑N−1
i=0 δξi . In the context

of machine learning, ∇F (x) = N−1
∑N−1
i=0 ∇xf(x; ξi) is called full or batch gradient or simply gradient. If N is

very large, the gradient ∇F (x) = N−1
∑N−1
i=0 ∇xf(x; ξi) is difficult to compute. Again, this motivates SGD as we

described in the previous lecture by sampling at every time step from the fixed training set with replacement.

Relying on SGD, we assume that at (every) step k we have evaluations g(xk, ξk) of g(x, ξ), which is an unbiased
estimator of the gradient ∇F (xk) given x0, ξ0, . . . , ξk−1 and therefore a surrogate for ∇F (xk). We then perform
steps of gradient descent with g(xk, ξk) replacing∇F (xk):

Intput: Initial vector x0 ∈ Rn and learning rates εk
while termination condition is not met do

Update xk+1 = xk − εkg(xk, ξk)
end

Algorithm 1: SGD

Some comments:

1. In the context of stochastic programming, often the expectation in (6.1) cannot be computed explicitly, partic-
ularly when f does not have a closed form. This motivates the use of sequences of observations ξ0, ξ1, . . . to
solve this problem.

2. An important conclusion is that the SGD in solving the stochastic program (6.1) passes over the data only once,
while in the machine learning context, the SGD in solving (6.2) relies on sampling with replacement from the

1The same symbol F (x) is deliberately used here for unification purposes.
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training set. Therefore, the two procedures aim to minimize different objectives. The first procedure is called
stochastic approximation (SA) and goes after the expected risk, while the second procedure is called sample
average approximation (SAA) and goes after the empirical risk. This conclusion motivates the question of how
far the two objectives and their corresponding solutions are from each other. Some answers are provided in
some of the subsequent comments.

3. From a statistical perspective, if one allows N to increase, then {N−1
∑N−1
i=0 f(x; ξi)} corresponds to a se-

quence of random approximations of F (x) in (6.1). Moreover, for any N , N−1
∑N−1
i=0 f(x; ξi) corresponds

to a (standard) Monte Carlo estimator of F (x) in (6.1) when {ξ0, ξ1, . . . , ξN−1} is an i.i.d. sample. Such
estimators are unbiased estimators of the objective function F (x) in (6.1).

4. Denoting by x̂N and F̂N an optimal solution and the optimal value of problem (6.2), x̂N and F̂N provide
approximations to an optimal solution x∗ and the optimal value F ∗ of problem (6.1). When x∗ is the unique
optimal solution of (6.1), then x̂N → x∗ and F̂N → F ∗ under fairly general conditions. More explicitly, under
proper conditions P (|F (x̂N )− F (x∗)| ≤ ε) for F (x) in (6.1) and P (‖x̂N − x∗‖ ≤ ε) converge exponentially
fast to one in the sample size N for any given ε > 0. Under further conditions, more can be established, namely
that P (x̂N = x∗) converges to one exponentially fast in the sample size N .

5. The sequence of optimal values {F̂N} satisfies a Central Limit Theorem (CLT):
√
N(F̂N − F ∗)

d−→ N(0, σ2
∗),

where σ2
∗ = Var(f(x∗, ξ)). Here, d−→ denotes convergence in distribution. An immediate conclusion is that

F̂N = F ∗+OP

(
1/
√
N
)

, which gives the corresponding rate of convergence2. This rate of convergence is not

surprising since it holds for pointwise estimators:
√
N
[
N−1

∑N−1
i=0 ∇xf(x; ξi)− F (x)

]
/
√

Var(f(x, ξ))
d−→

N(0, 1) for any fixed x by the CLT, which leads to the error N−1
∑N−1
i=0 ∇xf(x; ξi)−F (x) converging to zero

at the same rate as before. Here, again F (x) is the objective in (6.1).

6. Often in practice, N has to be very large in order to obtain a reasonable approximation in the described setup.
This is crucial, especially when the evaluation of f(x, ξ) for a given ξ is computationally expensive. This
motivates variance reduction techniques, which lead to estimators with smaller variance than the ones obtained
with standard sampling. Therefore, the same error can be obtained with less computational effort, which is a
critical step for the use of sampling-based methods in large-scale problems.

Finally, some remarks on the implementation of SGD and its convergence properties are:

• Biased but consistent gradient estimators can be also motivated in some setups when implementing SGD.

• Convergence analysis for a strongly convex objective with a Lipschitz gradient (previous lecture): In the
previous lecture we proved that the convergence rate of SGD for a strongly convex F with a Lipschitz gradient
is O

(
1
k

)
.

Nemirovski: “When minimizing strongly convex functions, no algorithm performing k queries to noisy first-
order oracles, can achieve better accuracy than O

(
1
k

)
.”

This means that if we only use noisy gradients in minimizing F , the best achievable accuracy by any algorithm
is O

(
1
k

)
. Sometimes SGD is implemented to return x̃k = 1

k

∑k
i=1 xi. This variation improves robustness, but

still the rate is O
(

1
k

)
.

2We write XN = OP (YN ) if for every ε > 0, ∃M,N such that

P

(∣∣∣∣XN

YN

∣∣∣∣ < M

)
> 1− ε ∀n > N.

Any OP (1) sequence is referred to as a bounded in probability sequence. In the provided CLT, the normal distribution to the right of d−→ is OP (1).
This justifies the OP (1/

√
N) term in the convergence of {F̂N}.



Lecture 6: Stochastic Gradient Descent-Part II 6-3

• Depending on if the SGD is applied in solving (6.1) or (6.2), the expectation in the associated convergence
rates (in the previous lecture and in subsequent sections here) is with respect to the corresponding underlying
distributions, which correspond to either sampling directly from P in the case of SA and passing over the data
once or sampling with replacement from the dataset in the case of SAA.

6.2 Convergence Analysis for a Convex Objective

Continuing the convergence analysis of SGD initiated in the previous lecture, we now assume that:

• F is a convex function,

• E[‖g(x, ξ)‖2] ≤ C2,∀x,

• {ξ0, ξ1, . . . , ξN−1} is an i.i.d. random sample, independent of x0,

• g(xk, ξk) is an unbiased estimator of∇F (xk) given x0, ξ0, . . . , ξk−1,

• x̃k =
∑k
t=0

εt∑k
j=0 εj

xt is returned instead of xk = xk−1 − εk−1g(xk−1, ξk−1).

Theorem 6.1. Under the above assumptions

E[F (x̃k)− F (x∗)] ≤
1
2E [‖x0 − x∗] ‖+ 1

2C
2
∑k
t=0 ε

2
t∑k

t=0 εt
.

If εk � 1√
k+1

, then:

E[F (x̃k)− F (x∗)] .
log(k + 1)√

k + 1
.

Proof. By the convexity of F :

F (x∗) ≥ F (xk) +∇F (xk)T (x∗ − xk)

or ∇F (xk)T (x∗ − xk) ≤ F (x∗)− F (xk)

or ∇F (xk)T (xk − x∗) ≥ F (xk)− F (x∗)

and therefore:
E[∇F (xk)T (xk − x∗)] ≥ E[F (xk)− F (x∗)]. (6.3)

We now expand ‖xk+1 − x∗‖2 as in the case of a strongly convex F in the previous lecture:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 + ε2
k‖g(xk, ξk)‖2 − 2εk(xk − x∗)T g(xk, ξk). (6.4)

Using the fact that E[(xk −x∗)T g(xk, ξk)] = E[(xk −x∗)∇F (xk)] and taking the expectation in (6.4) by employing
(6.3) and the assumption E[‖g(x, ξ)‖2] ≤ C2,∀x, we obtain:

2εkE [F (xk)− F (x∗)] ≤ E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ ε2

kC
2. (6.5)
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Summing (6.5) over t = 0, . . . , k we get:

k∑
t=0

2εtE[F (xt)− F (x∗)] ≤ E[‖x0 − x∗‖2]− E[‖xk+1 − x∗‖2] + C2
k∑
t=0

ε2
t

≤ E[‖x0 − x∗‖2] + C2
k∑
t=0

ε2
t . (6.6)

We now divide both sides by 2
∑k
j=0 εj to obtain:

k∑
t=0

εt∑k
j=0 εj

E[F (xt)− F (x∗)] ≤
1
2E[‖x0 − x∗‖2] + 1

2C
2
∑k
t=0 ε

2
t∑k

t=0 εt
(6.7)

or

E

[
k∑
t=0

εt∑k
j=0 εj

(F (xt)− F (x∗))

]
≤

1
2E[‖x0 − x∗‖2] + 1

2C
2
∑k
t=0 ε

2
t∑k

t=0 εt
. (6.8)

We further note that
εt∑k
j=0 εj

> 0 and
k∑
t=0

εt∑k
j=0 εj

= 1.

Employing the fact that F is convex, we finally have:

E[F (x̃k)− F (x∗)] ≤
1
2E [‖x0 − x∗] ‖+ 1

2C
2
∑k
t=0 ε

2
t∑k

t=0 εt
.

For the second part, let εk � 1√
k+1

. Then, by employing standard results for the harmonic sum we have:

k∑
t=0

ε2
t �

k∑
t=0

1

t+ 1
=

k+1∑
t=1

1

t
� log(k + 1).

Moreover,
k∑
t=0

εt �
k∑
t=0

1√
t+ 1

=

k+1∑
t=1

1√
t
,

which satisfies

2
√
k + 2− 2 <

k+1∑
t=1

1√
t
< 2
√
k + 1.

Combining these results, we obtain:

E[F (x̃k)− F (x∗)] .
log(k + 1)√

k + 1
.

6.3 Almost Sure Convergence and Relevant Properties

Consider again the SGD iteration xk+1 = xk − εkg(xk, ξk). Assume that the learning rate schedule satisfies:
∞∑
k=0

εk =∞ and
∞∑
k=0

ε2
k <∞.
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Then, for any initialization point x0 ∈ Rn and under some additional mild conditions,

xk → x∗ almost surely, (6.9)

where x∗ is either a global minimum of F when F is convex or pseudoconvex or a local minimum of F otherwise.

6.3.1 A bit of background material

For completeness purposes, we provide some background material on pseudoconvexity and related concepts in opti-
mization. Not all this material is relevant to our discussion here. Nevertheless, it is provided in a similar spirit as in
previous lectures for general background purposes.

Definition 6.2. Let X ⊂ Rn be a nonempty open set and let f : X → R be a differentiable function on X. Then, f is
pseudoconvex on X if

f(x) < f(y)⇒ ∇f(y)T (x− y) < 0, ∀x, y ∈ X

or equivalently if
∇f(y)T (x− y) ≥ 0⇒ f(x) ≥ f(y), ∀x, y ∈ X.

Remark: Often in the definition of a pseudoconvex function, X is also assumed to be convex. Nevertheless, convexity
of X is not necessary.

This definition states that if the directional derivative of a pseudoconvex function at any point y in the direction x− y
is nonnegative, then the function values are nondecreasing in that direction. The definition also implies that if f is
pseudoconvex and∇f(y) = 0, then y is a global minimum of f over X. Pseudoconvexity leads to sufficient optimality
conditions in nonlinear optimization, since if a differentiable objective function is pseudoconvex, then the usual first-
order stationarity conditions produce a global minimum.

Note: In relevance to prior lecture notes:

convexity⇒ pseudoconvexity,
pseudoconvexity⇒ strict quasiconvexity. (6.10)

The converses are not true. For both implications, a convex domain X is assumed.

Finally, observe that the implication

strict quasiconvexity⇒ quasiconvexity (6.11)

that one would expect to appear in (6.10) has not been added in the second line. Assuming that the reader is familiar
with the role of quasiconvexity in optimization, we note that the implication (6.11) does not hold in general. To see
this, let X = [−1, 1] and consider the function

f(x) =

{
1, x = 0
0, −1 ≤ x < 0, 0 < x ≤ 1.

(6.12)

This function is strictly quasiconvex but not quasiconvex.

Note: This conclusion appears to be due to the definition of strict quasiconvexity used here. A small survey showed to
us that there exist definitions of strict quasiconvexity in the optimization literature, which are not exactly equivalent.

We first start by giving the definition of a quasiconvex function:

Definition 6.3. Let X be a convex subset of Rn. A function f : X→ R is said to be quasiconvex on X if all its sublevel
sets Sc = {x ∈ X : f(x) ≤ c} for c ∈ R are convex.
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Theorem 6.4. Let X be a convex subset of Rn. A function f : X → R is quasiconvex on X if and only if for every
x, y ∈ X:

f(x) ≤ f(y)⇒ f(λx+ (1− λ)y) ≤ f(y), ∀λ ∈ [0, 1]

or alternatively
f(λx+ (1− λ)y) ≤ max{f(x), f(y)}, ∀λ ∈ [0, 1].

This theorem motivates different definitions or notions of strict quasiconvexity existing in the literature. The definition
of strict quasiconvexity used here and for the remaining of this subsection is the following:

Definition 6.5. Let X be a convex subset of Rn. A function f : X → R is said to be strictly quasiconvex on X if for
every x, y ∈ X such that x 6= y:

f(x) < f(y)⇒ f(λx+ (1− λ)y) < f(y), ∀λ ∈ (0, 1).

The following notion of strict quasiconvexity is also very common in the literature:

Definition 6.6. Let X be a convex subset of Rn. A function f : X → R is said to be strictly quasiconvex on X if f is
quasiconvex and if for every x, y ∈ X such that x 6= y:

f(λx+ (1− λ)y) < max{f(x), f(y)}, ∀λ ∈ (0, 1).

Remark: According to the second definition, f(x) in (6.12) is not strictly quasiconvex.

To connect strict quasiconvexity and quasiconvexity according to Definition 6.5, the concept of lower semi-continuity
is required:

Definition 6.7. Let X be a metric space and let f : X → R be a real-valued function. We say that f is lower semi-
continuous at x0 ∈ X if for every ε > 0 there exists a neighborhood U of x0 such that f(x) > f(x0)− ε for all x ∈ U.
Equivalently, this can be expressed as:

lim inf
x→x0

f(x) ≥ f(x0).

Intuition: Roughly speaking, f(x) for values of x near x0 is either close to or greater than f(x0).

Remark: A function may be lower semi-continuous at a point x0 without being either left or right continuous at x0.

Relevance to optimization: Lower and upper semi-continuity correspond to weaker concepts than continuity. Every
lower semi-continuous function on a compact space X has a minimum on X.

Theorem 6.8. Let f : X→ R, where X ⊂ Rn is a convex set. If f is strictly quasiconvex and lower semi-continuous
on X, then it is quasiconvex on X.

6.3.2 Back to our Discussion

Example: (Mean Estimation via SGD) Suppose that we want to solve

min
x∈R

F (x) =
1

2
E
[
(x− ξ)2

]
by employing the SGD algorithm. Observe that (x− ξ)2 is convex in x for any ξ ∈ R and therefore F (x) is convex.

Lemma 6.9. For any random variable X ,

E[(X − E[X])2] ≤ E[(X − c)2] for any c ∈ R.
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This lemma shows that the optimal solution in our problem is

x∗ = arg min
x∈R

F (x) = E[ξ] = µ

and is unique. Therefore, for any initialization x0 of the SGD, (6.9) implies that

xk → E[ξ] almost surely.

To see this, note that

xk+1 = xk − εkg(xk, ξk) = xk − εk(xk − ξk) = (1− εk)xk + εkξk. (6.13)

We now choose εk = 1
k+1 . Then, for any x0 ∈ R:

xk+1 =
k

k + 1
xk +

1

k + 1
ξk =

1

k + 1

k∑
t=0

ξt → E[ξ] almost surely

by the Strong Law of Large Numbers3. Since by Fatou’s Lemma, almost sure convergence implies convergence in
probability, the SGD estimator is also consistent4.

Expected Evolution: We observe further that each iterate of the sequence {xk}k≥1 is an unbiased estimator of µ:

E[xk+1] =
1

k + 1

k∑
t=0

E[ξt] = µ.

Therefore, trivially:
lim
k→∞

E[xk] = µ.

Convergence in the Mean Square Sense: Let Var(ξk) = σ2 <∞. We can easily establish that

E
[
(xk − µ)2

]
=
σ2

k
= O(εk) −−−−→

k→∞
0.

Almost sure convergence to µ holds also for more general learning schedules satisfying the conditions
∑∞
k=0 εk =∞

and
∑∞
k=0 ε

2
k < ∞. An example of using these conditions can be obtained by analyzing the asymptotic mean of the

SGD estimator:

E[xk+1 − µ] = (1− εk)E[xk] + εkE[ξk]− µ
= (1− εk)E[xk − µ] + εkE[ξk − µ]

= (1− εk)E[xk − µ].

By iterating this equation, we obtain:

E[xk+1 − µ] =

k∏
t=0

(1− εt)E[x0 − µ].

By taking the absolute value to both sides and by assuming that εk ∈ (0, 1),∀k, the following bound follows:

|E[xk+1 − µ]| =
k∏
t=0

(1− εt) |E[x0 − µ]| ≤
k∏
t=0

e−εt |E[x0 − µ]| = e−
∑k

t=0 εt |E[x0 − µ]| .

3Clearly, we implicitly assume that |E[ξ]| <∞.
4This is also a demonstration of the Weak Law of Large Numbers.
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Here, we have used the inequality 1− x ≤ e−x, ∀x ∈ R. Letting k →∞ and using the fact that
∑∞
k=0 εk =∞ we

establish the asymptotic unbiasedness of {xk}.

lim
k→∞

E[xk] = µ.

Example: (M-estimation) Suppose that we have i.i.d. observations x1, x2, . . . , xN ∼ P ∈ P and a parametric family
of distributions Pθ = {Pθ : θ ∈ Θ} ⊂ P for the purpose of approximating P . Our goal is to choose θ or equivalently
Pθ based on the available data record to approximate P in some sense. Let fθ(x) be the associated likelihood and
assume that it is strictly positive for all admissible θ, x. The Maximum-Likelihood (ML) estimator is a statistic of
the form θ̂N = TN (x1, x2, . . . , xN ) for some measurable function TN which maximizes

∏N
i=1 fθ(xi) or equivalently

minimizes
∑N
i=1 [− log (fθ(xi))]. In 1964, Peter J. Huber proposed generalizing this approach to M-estimators (“M”

stands for “Maximum Likelihood-type”) which are defined as the statistics θ̂N minimizing

N∑
i=1

ρ(xi; θ),

where ρ is some real-valued function, often with certain properties. Assuming differentiability of ρ with respect to θ,
clearly

N∑
i=1

∇θρ(xi; θ̂N ) = 0

is an optimality condition. Choosing ρ(x; θ) = − log fθ(x), we recover the ML estimators, which are M-estimators.
Suppose further that our observation record is of the form {(x1, y1), (x2, y2), . . . , (xN , yN )}, where (xi, yi) is an
input-output pair assumed to be linearly related. Let xi, θ ∈ Rn and yi ∈ R for any i. Then, Ordinary Least Squares
(OLS) estimation for the linear regression model also provides an M-estimator:

N∑
i=1

(
yi − xTi θ

)2
, ρ((x, y); θ) = (y − xT θ)2.

In general,

CN (θ) = φ

(
1

N

N∑
i=1

ρ(xi; θ)

)
is called criterion function, where φ(·) is a continuous function and θ̂N = arg minθ∈Θ CN (θ). In the previous defi-
nition, M-estimators were defined with φ(x) = x. M-estimators enjoy similar consistency and asymptotic normality
properties as the ML estimators, occasionally with higher asymptotic variance. There are several reasons for studying
M-estimators:

• They may be more computationally efficient than ML estimators.

• They are often used in robust statistics, because they are more resistant to deviations from the underlying as-
sumptions than ML estimators.

• They can be analyzed without assuming that the true model P ∈ Pθ.

The following theorem establishes the consistency of M-estimators under some regularity conditions:

Theorem 6.10. Suppose that the parameter space Θ ⊂ Rp is compact and that the true parameter θo is an interior
point of Θ, i.e., θo ∈ int(Θ) and therefore P ∈ Pθ. Moreover, assume that

CN (θ)
p−→ C̄(θ) uniformly in Θ,
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i.e., supθ∈Θ |CN (θ) − C̄(θ)| p−→ 0, where C̄(θ) is a deterministic function of θ and that θo is the unique minimum of
C̄(θ). Then,

θ̂N
p−→ θo.

Example of SGD application: Let

θ̂N = arg min
θ∈Rp

N∑
i=1

%(yi − xTi θ),

where % : R→ R+ is a convex function and yi = xTi θo +wi,∀i, where {wi} corresponds to an i.i.d. zero-mean noise
sequence. We can then apply

θk+1 = θk + εk%
′(yk − xTk θk)xk

θ̃k+1 =
1

k + 1

k+1∑
r=1

θr

to approximate M-estimators.


