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4.1 Introduction

In this lecture, we discuss the convergence properties of steepest descent with constant stepsize, under various assump-
tions on the loss function f to be optimized. We previously considered the scenario where∇f(x) satisfied a Lipschitz
continuity condition and we were able to show convergence of the steepest descent to a stationary point of f . We
now consider the cases where f not only has a Lipschitz gradient, but is also convex or strongly convex, resulting in
stronger convergence results and bounds on the rate of convergence.

4.2 Constant Stepsize Steepest Descent: L-smooth Convex Loss Function

In this section, we analyze the case in which the loss function f is convex and has a Lipschitz gradient. We first begin
with the global underestimator property of convex functions, which is useful in proving convergence results.

Theorem 4.1 (Global underestimator property). Let f : Rn → R be convex and differentiable. Then, equivalently
∀x, y ∈ Rn,

f(y) ≥ f(x) +∇f(x)T (y − x).

Proof. We first show the implication “f convex”⇒ “f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y ∈ Rn”. Let x, y ∈ Rn.
By the definition of convexity:

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x), ∀λ ∈ [0, 1].

After rewriting, we get that

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x)), ∀λ ∈ [0, 1].

Consequently, ∀λ ∈ (0, 1],

f(y)− f(x) ≥ f(x+ λ(y − x))− f(x)
λ

.

Letting λ→ 0, we obtain:
f(y)− f(x) ≥ ∇f(x)T (y − x),

where the right hand side is due to the definition of the directional derivative for a differentiable function f : Rn → R.

For the reverse implication: Let x, y ∈ Rn and consider a point z on the line segment joining x, y:

z = λx+ (1− λ)y, λ ∈ [0, 1].
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We then have:

f(x) ≥ f(z) +∇f(z)T (x− z),
f(y) ≥ f(z) +∇f(z)T (y − z).

Multiplying with λ and 1− λ, respectively, and adding we obtain:

λf(x) + (1− λ)f(y) ≥ f(z) +∇f(z)T (λx+ (1− λ)y − z)
= f(z)

= f(λx+ (1− λ)y).

Therefore, f is convex.

To justify the title of this section, we give the following definition:

Definition 4.2. A function f : Rn → R is L-smooth if

f(y) ≤ f(x) +∇f(x)T (y − x) + 1

2
L‖y − x‖2, ∀x, y ∈ Rn.

Equivalently, f is L-smooth if its gradient is L-Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

We now proceed to show that if the function f is convex, has a Lipschitz gradient and the set of minimizers of f is
nonempty, then for sufficiently small constant stepsize, steepest descent converges at rate 1/k. Here, k represents the
iteration index.

Theorem 4.3. Let f : Rn → R be convex, continuously differentiable and L-smooth. Suppose that ∃x∗ ∈ Rn such
that f(x∗) = min

x∈Rn
f(x) > −∞. Then, the steepest descent iterates {xk}, given by xk+1 = xk − ε∇f(xk) with

0 < ε < 2
L , satisfy

f(xk) −−−−→
k→∞

f(x∗).

Moreover,

f(xk)− f(x∗) = O

(
1

k

)
.

Proof. We begin by upper bounding the distance between the iterates and the optimum point x∗. For any k ∈ N (N
contains 0) ,

‖xk+1 − x∗‖2 = ‖xk − ε∇f(xk)− x∗‖2

= ‖xk − x∗‖2 + ε2‖∇f(xk)‖2 − 2ε∇f(xk)T (xk − x∗)
≤ ‖xk − x∗‖2 + ε2‖∇f(xk)‖2 − 2ε(f(xk)− f(x∗)). (4.1)

The last inequality (4.1) follows from Theorem 4.1. Rearranging (4.1), we get:

2ε(f(xk)− f(x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + ε2‖∇f(xk)‖2.

Summing from k = 0 to k = N , we obtain:

2ε

N∑
k=0

(f(xk)− f(x∗)) ≤ ‖x0 − x∗‖2 − ‖xN+1 − x∗‖2 + ε2
N∑

k=0

‖∇f(xk)‖2. (4.2)
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From Theorem 3.2 in Lecture 3 notes, we have that

N∑
k=0

‖∇f(xk)‖2 ≤
f(x0)− f(x∗)
ε
(
1− 1

2εL
) . (4.3)

Plugging (4.3) in (4.2), we get:

2ε

N∑
k=0

(f(xk)− f(x∗)) ≤ ‖x0 − x∗‖2 − ‖xN+1 − x∗‖2 +
ε(f(x0)− f(x∗))

1− 1
2εL

≤ ‖x0 − x∗‖2 +
ε(f(x0)− f(x∗))

1− 1
2εL

. (4.4)

Recall from the proof of Theorem 3.2 in Lecture 3 notes that ∀k ∈ N,

f(xk+1)− f(xk) ≤ −ε
(
1− 1

2
εL

)
‖∇f(xk)‖2 ≤ 0.

Hence, ∀k ∈ N we have:
f(xk+1) ≤ f(xk).

Consequently, this implies that
N∑

k=0

(f(xk)− f(x∗)) ≥ N(f(xN )− f(x∗)). (4.5)

Using (4.5) in (4.4), we get

2εN(f(xN )− f(x∗)) ≤ ‖x0 − x∗‖2 +
ε(f(x0)− f(x∗))

1− 1
2εL

.

Thus, ∀N ∈ N,

0 ≤ f(xN )− f(x∗) ≤ 1

2εN

[
‖x0 − x∗‖2 +

ε(f(x0)− f(x∗))
1− 1

2εL

]
= O

(
1

N

)
.

We conclude that f(xk) −−−−→
k→∞

f(x∗) at rate 1/k.

Remark 4.4. A deficiency of the above theorem is that we need to know either L or an upper bound on L to be able
to choose ε ∈

(
0, 2

L

)
.

4.3 Strongly convex functions

In this section, we give some background material on strongly convex functions.

Definition 4.5 (Strong convexity). A differentiable function f : Rn → R is said to be strongly convex with parameter
m > 0 if

(∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖2, ∀x, y ∈ Rn. (4.6)

Moreover, a function f : Rn → R is strongly convex with parameter m > 0 if and only if f(x)− m
2 ‖x‖

2 is a convex
function.
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Note: Roughly speaking, strong convexity means that f is “as least as convex” as a quadratic function.

Remarks:

1. Strong convexity⇒ strict convexity⇒ convexity.

2. Using the Cauchy-Schwarz inequality to upper bound the inner product in (4.6), we obtain that strong convexity
with parameter m > 0 implies that

‖∇f(x)−∇f(y)‖ ≥ m‖x− y‖, ∀x, y ∈ Rn.

If in addition∇f is L-Lipschitz, then last inequality implies that L ≥ m.

The following characterization is particularly useful when a strongly convex function is twice differentiable.

Proposition 4.6. Let f : Rn → R be a twice differentiable function. Then, the following are equivalent:

1. f is strongly convex with parameter m > 0.

2. ∀x ∈ Rn, ∇2f(x) � mI .

3. ∀x, y ∈ Rn, f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖y − x‖

2.

Here,∇2f(x) represents the Hessian matrix of f at x, and I represents the n×n identity matrix. A � B denotes that
A−B is positive semi-definite.

Proof. (1 =⇒ 2) For any x, v ∈ Rn, we have

lim
h→0

∇f(x+ hv)−∇f(x)
h

= ∇2f(x)v.

Using the definition (4.6) of strong convexity , we get

vT∇2f(x)v = lim
h→0

(∇f(x+ hv)−∇f(x))T (hv)
h2

≥ lim
h→0

m‖hv‖2

h2

= m‖v‖2.

Thus, ∀x, v ∈ Rn,
vT (∇2f(x)−mI)v ≥ 0.

This implies ∀x ∈ Rn, ∇2f(x)−mI is positive semi-definite.

(2 =⇒ 3) Let x, y ∈ Rn. Using second-order Taylor expansion around x, we have that

f(y) = f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(z)(y − x), (4.7)

where z = x+ λ(y − x) and λ ∈ [0, 1]. By assumption,∇2f(z) � mI . Hence,

f(y) ≥ f(x) +∇f(x)T (y − x) + 1

2
(y − x)TmI(y − x)

= f(x) +∇f(x)T (y − x) + m

2
‖y − x‖2.
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(3 =⇒ 1) For any x, y ∈ Rn, we have that

f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
‖y − x‖2, (4.8)

and similarly
f(x) ≥ f(y) +∇f(y)T (x− y) + m

2
‖y − x‖2. (4.9)

Adding (4.8) and (4.9), we get
(∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖2.

Sometimes, functions that satisfy the above inequalities are called elliptic.

Univariate f : If f : R→ R and f is twice continuously differentiable, then:

• f is convex⇔ f ′′(x) ≥ 0, ∀x ∈ R.

• f is strictly convex if f ′′(x) > 0, ∀x ∈ R. (Note that this condition is sufficient for strict convexity but not
necessary.)

• f is strongly convex⇔ f ′′(x) ≥ m > 0, ∀x ∈ R.

Note: In general, it is easier to work with strongly convex functions than convex or strictly convex functions. Moreover,
strongly convex functions have unique minima on compact sets, a common property with strictly convex functions.

4.4 Constant Stepsize Steepest Descent: L-smooth Strongly Convex Loss
function

We now proceed to analyze the case where f is strongly convex and has a Lipschitz gradient. We show that we can
get stronger convergence results for the constant stepsize steepest descent.

Theorem 4.7. If f is strongly convex with parameter m and L-smooth, the constant stepsize steepest descent iterate
xk converges to x∗ at a linear or a geometric rate1, where ε is the corresponding stepsize.

Proof.

‖xk+1 − x∗‖2 = ‖xk − ε∇f(xk)− x∗‖2

= ‖xk − x∗ − ε(∇f(xk)−∇f(x∗))‖2 (∇f(x∗) = 0)

= ‖xk − x∗‖2 + ε2‖∇f(xk)−∇f(x∗)‖2 − 2ε∇f(xk)T (xk − x∗)
≤ ‖xk − x∗‖2 + ε2L2‖xk − x∗‖2 + 2ε∇f(xk)T (x∗ − xk). (4.10)

Recall that f is strongly convex, i.e., f is necessarily convex. Therefore, using the global underestimator property we
have that

f(x∗) ≥ f(xk) +∇f(xk)T (x∗ − xk)⇔ ∇f(xk)T (x∗ − xk) ≤ f(x∗)− f(xk). (4.11)

1I.e., the distance ‖xk − x∗‖ is decreased at least as fast as the geometric progression {ρk‖x0 − x∗‖} for some ρ ∈ (0, 1). This is called
linear or geometric convergence.
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By (4.10) and (4.11), we get,

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖2 + ε2L2‖xk − x∗‖2 + 2ε(f(x∗)− f(xk)). (4.12)

Moreover, since f is strongly convex,

f(xk) ≥ f(x∗) +∇f(x∗)T (xk − x∗) +
m

2
‖xk − x∗‖2 ⇔ −

m

2
‖xk − x∗‖2 ≥ f(x∗)− f(xk). (4.13)

By (4.12) and (4.13),

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ε2L2‖xk − x∗‖2 − εm‖xk − x∗‖2

= (1 + ε2L2 − εm)‖xk − x∗‖2. (4.14)

Iterating (4.14), we have,

‖xk − x∗‖2 ≤ (1 + ε2L2 − εm)k‖x0 − x∗‖2.

Therefore, xk −−−−→
k→∞

x∗ geometrically fast.

Note that,

1 + ε2L2 − εm =
(
Lε− m

2L

)2
+ 1−

( m
2L

)2
≥ 1−

( m
2L

)2
.

Equality is achieved if

Lε− m

2L
= 0⇔ ε =

m

2L2
.

Therefore, the best convergence rate of xk to x∗ is given by the progression:

‖xk − x∗‖2 ≤
[
1−

( m
2L

)2]k
‖x0 − x∗‖2.

This may be bad if m
L � 1 or equivalently L

m � 1, i.e., if the condition number of the Hessian∇2f(x) is very large.

Condition Number: If mI � ∇2f(x) � LI , the ratio L/m is an upper bound on the condition number of the matrix
∇2f(x), i.e., the ratio of its largest eigenvalue to its smallest eigenvalue. This upper bound translates to an upper
bound on the condition number of the sublevel sets of f {x ∈ Rn|f(x) ≤ β} for f(x∗) < β ≤ f(x0). The condition
number of a convex set (the sublevel sets of f are convex sets, since f is strongly convex2) gives a measure of its
anisotropy or eccentricity. If the condition number is small, the set is nearly spherical. If the condition number is
large, the set is anisotropic, i.e., wider in some directions than in others. From the above theorem, we see that the
condition number of the sublevel sets of f (which is bounded by L/m) has a strong effect on the efficiency of the
constant stepsize steepest descent algorithm.

2Note that “f convex” implies convex sublevel sets. Nevertheless, a function whose sublevel sets are convex may fail to be convex. A function
whose sublevel sets are convex is called a quasiconvex function.
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Remark 4.8. Consider a twice differentiable function f that is strongly convex with parameter m, i.e.,

mI � ∇2f(x),

and L-smooth:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Therefore,

mI � ∇2f(x) � LI. (4.15)

Rearranging (4.7), we have that

1

2
(y − x)T∇2f(z)(x− y) = f(y)− f(x)−∇f(x)T (y − x).

Applying the bounds in (4.15), we get:

1

2
m‖y − x‖2 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ 1

2
L‖y − x‖2.

Thus,

1

2
m‖xk − x∗‖2 ≤ f(xk)− f(x∗) ≤

1

2
L‖xk − x∗‖2, (4.16)

since ∇f(x∗) = 0.

In Theorem 4.7 we proved that xk −−−−−→
k→+∞

x∗ at a linear or geometric rate under the assumptions of strong convexity

and L-smoothness. From (4.16), we can see that bounds on ‖xk − x∗‖ and f(xk) − f(x∗) can be related to each
other.


