ECE534 Random Processes

Spring 2020

University of Illinois at Urbana-Champaign

Midterm 2: Solution

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1

(a) Since (Z, Y) are independent Gaussian random variables, they are jointly Gaussian. Moreover,

$$
\left[\begin{array}{c}
Z+Y \\
Y
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Z \\
Y
\end{array}\right]
$$

Therefore, $(Z+Y, Y)$ are jointly Gaussian. Since $f_{X, Y}=f_{Z+Y, Y}$, we conclude that (X, Y) are jointly Gaussian.
(b) Since (X, Y) are jointly Gaussian, $E[Y \mid X]$ is linear and it is given by

$$
E[Y \mid X]=E[Y]+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-E[X])
$$

By $f_{X, Y}=f_{Z+Y, Y}$ we have that $E[X]=E[Z+Y]=\mu, \operatorname{Var}(X)=\operatorname{Var}(Z+Y)=1+\sigma^{2}$ and

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(Z+Y, Y)=\operatorname{Cov}(Z, Y)+\operatorname{Cov}(Y, Y)=\sigma^{2}
$$

By combining

$$
E[Y \mid X]=\mu+\frac{\sigma^{2}}{1+\sigma^{2}}(X-\mu)
$$

Problem 2

By Markov's inequality

$$
P\left(\left|X_{n}-X\right|>\epsilon\right)=P\left(\left|X_{n}-X\right|^{2}>\epsilon^{2}\right) \leq \frac{E\left[\left|X_{n}-X\right|^{2}\right]}{\epsilon^{2}}
$$

Therefore,

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\epsilon\right) \leq \sum_{n=1}^{\infty} \frac{E\left[\left|X_{n}-X\right|^{2}\right]}{\epsilon^{2}}<\infty
$$

By part (a) in the Borel-Cantelli lemma we conclude that $X_{n} \xrightarrow[n \rightarrow \infty]{a . s} X$.

Problem 3

Let $C=\left\{|X| \geq \frac{c}{4}\right\}$. Then,

$$
\begin{aligned}
\frac{1}{4} \leq E[|X|] & =E\left[|X| \mathbb{1}_{C}\right]+E\left[|X| \mathbb{1}_{C}^{c}\right] \\
& \leq \sqrt{E\left[X^{2}\right] E\left[\mathbb{1}_{C}^{2}\right]}+\frac{c}{4} \\
& =\sqrt{P(C)}+\frac{c}{4}
\end{aligned}
$$

Therefore,

$$
P\left(|X| \geq \frac{c}{4}\right) \geq \frac{(1-c)^{2}}{16}
$$

Problem 4

We first note that $Y_{n}>0, \forall n \geq 1$ almost surely since f, g are densities. Therefore,

$$
\begin{aligned}
E\left[\left|Y_{n}\right|\right]=E\left[Y_{n}\right] & =E\left[\prod_{k=1}^{n} \frac{g\left(X_{k}\right)}{f\left(X_{k}\right)}\right] \\
& =\int \prod_{k=1}^{n} g\left(x_{k}\right) d x_{1} \cdots d x_{n}=1<\infty, \quad \forall n \geq 1
\end{aligned}
$$

due to the i.i.d. assumption on $\left(X_{k}\right)_{k \geq 1}$ and the fact that f, g are densities.
Moreover,

$$
\begin{aligned}
E\left[Y_{n+1} \mid X_{n}, \ldots, X_{1}\right] & =E\left[\left.\prod_{k=1}^{n+1} \frac{g\left(X_{k}\right)}{f\left(X_{k}\right)} \right\rvert\, X_{n}, \ldots, X_{1}\right] \\
& =\prod_{k=1}^{n} \frac{g\left(X_{k}\right)}{f\left(X_{k}\right)} E\left[\frac{g\left(X_{n+1}\right)}{f\left(X_{n+1}\right)}\right]=Y_{n}
\end{aligned}
$$

by using the observation that $E\left[\frac{g\left(X_{n+1}\right)}{f\left(X_{n+1}\right)}\right]=\int g\left(x_{n+1}\right) d x_{n+1}=1$.

Problem 5

(a) The chain is not irreducible, since, e.g., states 2,3 are not reachable by state 1 . Moreover, it is easy to see that all states have period 1 . Therefore, the chain is aperiodic.
(b) Solving the balance equations

$$
\pi=\pi P
$$

by taking into account the constraint $\pi_{1}+\pi_{2}+\pi_{3}=1$, we obtain

$$
\pi_{1}=\pi_{1}, \quad \pi_{2}=\pi_{2}, \quad \pi_{3}=0
$$

subject to $\pi_{1}+\pi_{2}+\pi_{3}=1$. Therefore, the chain has infinite many stationary distributions, which are elements of the set

$$
\Pi=\left\{x \in[0,1]: \pi=\left[\begin{array}{lll}
x & 1-x & 0
\end{array}\right]\right\}
$$

(c) Clearly, $\lim _{n \rightarrow \infty} p_{k}=\left[\begin{array}{ll}1 / 21 / 2 & 0\end{array}\right]$, since $p_{0} \in \Pi$.

