ECEbH34, Spring 2020: Midterm #1

Problem 1

Consider a coin with P(H) = p. The coin is tossed repeatedly. Let p,, denote the probability that
in n tosses an even number of H appears, with 0 being an even number. Similarly to HW2, find a
recursion for p, and identify the appropriate boundary condition pg.

Solution

Clearly, the recursion is

Pn = p(l _pn—l) + (1 _p)pn—b n>1

and pg = 1.

Problem 2

Let X ~ Pois(A). Use LOTUS to show that

E[X"] = AE[(X +1)"1].

Solution

By LOTUS:




Problem 3

Suppose that X ~ N(0,1). Recall the proof of the Gaussian tail bound derived in class, namely
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The purpose of this problem is to give an alternative proof of the same result. Start by expressing

Then, introduce a change of variables to make the lower limit of the integral equal to 0 and
immediately finish the proof by appropriately upper bounding the resulting integral.

Solution
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Introduce the change of variables u =t — x to obtain

o0 1 uTw 2 o0 1 u2 12
P(X >x)= / ~45 —/ e 2e ze “du
0 0

2
oo ZQ o0
e "du < ez / e "du
/0 V2T 0
22 e ur 1 1 22
2 = ¢ 2.
[ x ] 0o TV2m

’u.

In the first inequality, the fact that e™ 2 < 1,Vu € R has been used.
Alternative Solution: As before,
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Problem 4

1. Let X be a random variable. Assume that E [eX 2] < 2. Show that

P(IX|>t) <2e", vt>0.



Solution

Using Markov’s inequality and the Chernoff trick with A =1
P(X|>1)=P(X?>t2) =P (eX2 > et"’)

<F {eXZ] e_t2 < 2€_t2, Vvt > 0.

2. Let Z be a random variable. Suppose that E[Z] = 0 and E[|Z|P] < pP,Vp > 1. Show that
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Note: E[ZP] < E[|Z]P] <pP,¥p > 1. Also, 1 +x < e*,Vz € R and ()P <pl.

Solution
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