ECE534, Spring 2020: Midterm \#1

Problem 1

Consider a coin with $P(H)=p$. The coin is tossed repeatedly. Let p_{n} denote the probability that in n tosses an even number of H appears, with 0 being an even number. Similarly to HW2, find a recursion for p_{n} and identify the appropriate boundary condition p_{0}.

Solution

Clearly, the recursion is

$$
p_{n}=p\left(1-p_{n-1}\right)+(1-p) p_{n-1}, \quad n \geq 1
$$

and $p_{0}=1$.

Problem 2

Let $X \sim \operatorname{Pois}(\lambda)$. Use LOTUS to show that

$$
E\left[X^{n}\right]=\lambda E\left[(X+1)^{n-1}\right] .
$$

Solution

By LOTUS:

$$
\begin{aligned}
E\left[X^{n}\right] & =\sum_{k=0}^{\infty} k^{n} e^{-\lambda} \frac{\lambda^{k}}{k!}=\sum_{k=1}^{\infty} k^{n} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =\lambda \sum_{k=1}^{\infty} k^{n-1} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} \\
& =\lambda \sum_{m=0}^{\infty}(1+m)^{n-1} e^{-\lambda} \frac{\lambda^{m}}{m!} \\
& =\lambda E\left[(X+1)^{n-1}\right] .
\end{aligned}
$$

Problem 3

Suppose that $X \sim \mathcal{N}(0,1)$. Recall the proof of the Gaussian tail bound derived in class, namely

$$
P(X \geq x) \leq \frac{1}{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \leq \frac{1}{x} e^{-\frac{x^{2}}{2}}, \quad \forall x>0
$$

The purpose of this problem is to give an alternative proof of the same result. Start by expressing

$$
P(X \geq x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
$$

Then, introduce a change of variables to make the lower limit of the integral equal to 0 and immediately finish the proof by appropriately upper bounding the resulting integral.

Solution

$$
P(X \geq x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
$$

Introduce the change of variables $u=t-x$ to obtain

$$
\begin{aligned}
P(X \geq x) & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(u+x)^{2}}{2}} d u=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} e^{-\frac{x^{2}}{2}} e^{-u x} d u \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \int_{0}^{\infty} e^{-\frac{u^{2}}{2}} e^{-u x} d u \leq \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \int_{0}^{\infty} e^{-u x} d u \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\left[-\frac{e^{-u x}}{x}\right]_{0}^{\infty}=\frac{1}{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

In the first inequality, the fact that $e^{-\frac{u^{2}}{2}} \leq 1, \forall u \in \mathbb{R}$ has been used.
Alternative Solution: As before,

$$
\begin{aligned}
P(X \geq x) & =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(u+x)^{2}}{2}} d u=\int_{0}^{\infty} \frac{u+x}{u+x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(u+x)^{2}}{2}} d u \\
& \leq \frac{1}{\sqrt{2 \pi} x} \int_{0}^{\infty}\left[-e^{-\frac{(u+x)^{2}}{2}}\right]^{\prime} d u=\frac{1}{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Problem 4

1. Let X be a random variable. Assume that $E\left[e^{X^{2}}\right] \leq 2$. Show that

$$
P(|X|>t) \leq 2 e^{-t^{2}}, \quad \forall t \geq 0
$$

Solution

Using Markov's inequality and the Chernoff trick with $\lambda=1$

$$
\begin{aligned}
P(|X|>t) & =P\left(X^{2}>t^{2}\right)=P\left(e^{X^{2}} \geq e^{t^{2}}\right) \\
& \leq E\left[e^{X^{2}}\right] e^{-t^{2}} \leq 2 e^{-t^{2}}, \quad \forall t>0 .
\end{aligned}
$$

2. Let Z be a random variable. Suppose that $E[Z]=0$ and $E\left[|Z|^{p}\right] \leq p^{p}, \forall p \geq 1$. Show that

$$
E\left[e^{\lambda Z}\right] \leq e^{2 e^{2} \lambda^{2}}, \quad \forall \lambda \text { such that }|\lambda| \leq \frac{1}{2 e}
$$

starting your derivation as

$$
E\left[e^{\lambda Z}\right]=E\left[1+\lambda Z+\sum_{p=2}^{\infty} \frac{(\lambda Z)^{p}}{p!}\right]=\cdots
$$

Note: $E\left[Z^{p}\right] \leq E\left[|Z|^{p}\right] \leq p^{p}, \forall p \geq 1$. Also, $1+x \leq e^{x}, \forall x \in \mathbb{R}$ and $\left(\frac{p}{e}\right)^{p} \leq p!$.

Solution

$$
\begin{aligned}
E\left[e^{\lambda Z}\right] & =E\left[1+\lambda Z+\sum_{p=2}^{\infty} \frac{(\lambda Z)^{p}}{p!}\right]=\left|E\left[1+\lambda Z+\sum_{p=2}^{\infty} \frac{(\lambda Z)^{p}}{p!}\right]\right| \leq 1+\sum_{p=2}^{\infty} \frac{|\lambda|^{p} E\left[|Z|^{p}\right]}{p!} \\
& \leq 1+\sum_{p=2}^{\infty} \frac{|\lambda|^{p} p^{p}}{\left(\frac{p}{e}\right)^{p}}=1+\sum_{p=2}^{\infty}(e|\lambda|)^{p}=1+(e|\lambda|)^{2} \sum_{p=0}^{\infty}(e|\lambda|)^{p} \\
& =1+\frac{(e \lambda)^{2}}{1-e|\lambda|} \leq 1+2(e \lambda)^{2} \leq e^{2 e^{2} \lambda^{2}} .
\end{aligned}
$$

