ECE534 Random Processes

University of Illinois at Urbana-Champaign
Spring 2020

Homework 5

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1. (Poisson process). Let N_{t} be a Poisson process with rate λ, and assume that $X_{1}, X_{2}, \ldots X_{n}$ are the corresponding inter-arrival times.
(a) Find the covariance function $C_{N}\left(t_{1}, t_{2}\right)$ of N_{t} for $t_{1}, t_{2} \in[0, \infty)$.
(b) Suppose that one starts observing the process at time $t=S$. Given that the last arrival happened at time $t=S-1$, find the probability that the next arrival happens before time $t=S+1$.
(c) Assume that only one arrival happens up to time $t=T$, i.e. $N_{T}=1$. Find the cumulative distribution function of the first arrival time X_{1}, i.e. $P\left[X_{1} \leq x \mid N_{T}=1\right]$.
(d) Given that k arrivals occur in the interval $[0, T]$, i.e. $N_{T}=k$, find the probability that the $k^{\text {th }}$ arrival doesn't happen before time $t=\alpha T$ for some $\alpha<1$.
(Hint: Given $N_{T}=k$, the arrival times of the k events are order statistics of i.i.d. uniform random variables in the interval $[0, T]$, i.e. they are uniform random variables sorted in ascending order.)

Problem 2. (Branching process). Consider a branching process with offspring distribution given by $p_{0}=\frac{1}{3}, p_{1}=\frac{1}{2}$ and $p_{2}=\frac{1}{6}$. Consider a population beginning with one individual, comprising generation zero. Compute the following quantities:
(a) Expected number of individuals at generation k.
(b) Expected number of individuals that have no offspring.
(c) Probability of extinction by generation 3 (but not by generation 2).
(d) Identify a sufficient condition on the offspring distribution p such that a branching process dies out eventually. Does the given branching process die out?

Problem 3. (Kalman Filtering). Consider the state and observation equations given by

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+w_{k} \\
y_{k} & =x_{k}+v_{k}
\end{aligned}
$$

where $w_{1}, w_{2}, \ldots, v_{1}, v_{2}, \ldots$ are independent $\mathcal{N}(0,1)$ random variables and $x_{0}=0$.
(a) First, consider estimating x_{k} using the LMMSE estimator of x_{k} given y_{k} alone. Compute $\widehat{E}\left[x_{k} \mid y_{k}\right]$ and the variance σ_{k}^{2} of the estimation error $e_{k}=x_{k}-\widehat{E}\left[x_{k} \mid y_{k}\right]$.
(b) What is the limit of σ_{k}^{2} as $k \rightarrow \infty$?
(c) Now use the Kalman filter equations to find $\hat{x}_{k \mid k}$ as a function of $\hat{x}_{k-1 \mid k-1}$ and the estimation error variance $\sigma_{k \mid k}^{2}$ as a function of $\sigma_{k-1 \mid k-1}^{2}$.
(d) What is the limit of $\sigma_{k \mid k}^{2}$ as $k \rightarrow \infty$?
(Hint: You can assume that the limit exists and set $\sigma_{k \mid k}^{2}=\sigma_{k-1 \mid k-1}^{2}=\sigma_{\infty}^{2}$ in (c).)

Problem 4. (WSS processes and LTI systems). A wide-sense stationary Gaussian process $X(t)$ has auto-correlation function $R_{x}(\tau)=5 e^{-2|\tau|}$. For each of the statements below, state whether it is true or false and explain your answer.
(a) If $X(t)$ is the input to an LTI system with impulse response $h(t)=e^{-2 t} u(t)$, then the output process is white. A process is called white if it has constant power spectral density.
(b) If $X(t)$ is the input to an LTI system with impulse response $h(t)=e^{-t^{2}}$, then the output process and the input process are orthogonal. Two processes are called orthogonal if their cross-correlation is 0 .
(Hint: Note that the impulse response has a form similar to the Gaussian pdf.)
(c) $Y(t)=X^{2}(t)$ is a Gaussian process.

Problem 5. (Ergodicity) Let $X(n)$ be a two-sided, strictly stationary and ergodic process. For each of the following processes: (i) find the mean $\mu_{Y}(n)$ in terms of μ_{X}, (ii) determine whether the process is strictly stationary, and (iii) determine whether the process is ergodic in the mean. Explain your answers.
(a) $Y(n)=\frac{1}{5} \sum_{k=-2}^{2} X(n-k)$
(b) $Y(n)=\left\{\begin{array}{ll}X(n), & \text { if } A>5 \\ 0, & \text { if } A \leq 5,\end{array}\right.$ where A is a Poisson random variable with parameter $\lambda . A$ and $X(n)$ are independent.

Problem 6. (Wiener filtering) Problem 9.13 from Prof. Hajek's book.
(Hint: Note that in a block diagram representation, each rectangular block represents a filter with an associated transfer function. If we denote the impulse responses of the first and the second filters as k_{1} and k_{2}, respectively, then $X_{\text {out }}(t)=X(t) * k_{1}(t) * k_{2}(t)$ and $N_{\text {out }}(t)=N(t) * k_{2}(t)$ where ' $*$ ' denotes the convolution operation.)

Problem 7. (Azuma-Hoeffding inequality) You throw a hundred balls, one at a time, into 20 bins. Each ball can fall in any one of the bins uniformly at random. Let X be the number of bins containing five balls or more after all balls are thrown. Find an upper bound to $P(X \geq 15)$.
(Hint: Let Z_{k} be the index of the bin where the $k^{\text {th }}$ ball falls. Show that $M_{k}=E\left[X \mid Z_{1}, \cdots, Z_{k}\right]$ is a martingale with bounded increments.)

Problem 8. (Geometric Brownian motion) Let $W(t)$ be a standard Brownian motion. Define

$$
X(t)=\exp \{W(t)\}, \quad \text { for all } \mathrm{t} \in[0, \infty)
$$

(a) Find $E[X(t)]$ for all $t \in[0, \infty)$.
(b) Find $\operatorname{Var}(X(t))$ for all $t \in[0, \infty)$.
(c) Let $0 \leq s \leq t$. Find $\operatorname{Cov}(X(s), X(t))$.
(Hint: Think about the moment generating function of a Gaussian random variable.)

