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Problem 1

1. Let α = 1
2

(
1√
1+ρ

+ 1√
1−ρ

)
and β = 1

2

(
1√
1+ρ
− 1√

1−ρ

)
. Note that any linear combination of W,Z corre-

sponds to a linear combination of X,Y :

aW + bZ = (aα+ bβ)X + (aβ + bα)Y,

which is Gaussian since X,Y are jointly Gaussian. Therefore, W and Z are jointly Gaussian.

2. From (a), W and Z have a bi-variate Gaussian density, determined by the mean vector and covariance matrix.
Clearly, µW = µZ = 0. For the variances and the correlation coefficient, we have:

σ2
Z = σ2

W = Cov(W,W ) =
1− ρ2

(1 + ρ)(1− ρ)
= 1,

ρW,Z = Cov(W,Z) =
−ρ+ ρ

(1 + ρ)(1− ρ)
= 0.

Therefore, W Z are uncorrelated (hence independent, being jointly Gaussian). This shows that for w, z ∈ R:

fWZ(w, z) = fW (w)fZ(z) =
1√
2π
e−

w2

2
1√
2π
e−

z2

2 =
1

2π
e−

w2+z2

2 .

3. The MMSE estimator of Z given W is the conditional mean E[Z|W ]. Since Z,W are independent, we have

E[Z|W ] = E[Z] = µZ = 0.

4. A straightforward computation gives Cov(X,W ) = 1
2

(√
1 + ρ+

√
1− ρ

)
. We now have:

Ê[X|W ] = µX +
Cov(X,W )

σ2
W

(W − µW ) =
1

2

(√
1 + ρ+

√
1− ρ

)
W.

Problem 2

By Bayes rule:

P (Xn = 1|Yn = 1) =
P (Yn = 1|Xn = 1)P (Xn = 1)

P (Yn = 1)
.

Also, by the definition of Yn,
P (Yn = 1|Xn = 1) = P (Yn = Xn) = 0.9.

We now solve for the stationary distribution of the DTMC by solving for π = (π1, π2) the equation πP = π subject
to π1 + π2 = 1. The solution is:

π1 = 1/3, π2 = 2/3.
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In this case, one can check that the stationary distribution is also limiting and therefore

lim
n→∞

P (Xn = 1) = π1 = 1/3, lim
n→∞

P (Xn = 2) = π2 = 2/3.

Also, by total probability

lim
n→∞

P (Yn = 1) = lim
n→∞

P (Yn = 1|Xn = 1)P (Xn = 1) + P (Yn = 1|Xn = 2)P (Xn = 2)

=
1

3
0.9 +

2

3
0.1.

Therefore,

lim
n→∞

P (Xn = 1|Yn = 1) = P (Yn = 1|Xn = 1) lim
n→∞

P (Xn = 1)

P (Yn = 1)
=

0.9 1
3

1
30.9 +

2
30.1

=
9

11
.

Problem 3

Let X be a finite state Markov chain. Then,

|Mt| ≤ |f(Xt)|+ |f(X0)|+
t−1∑
s=0

|(E[f(Xs+1)|Xs]− f(Xs))| <∞.

Additionally,

Mt+1 −Mt = f(Xt+1)− f(Xt)− E[f(Xt+1)|Xt] + f(Xt) = f(Xt+1)− E[f(Xt+1)|Xt].

Therefore,
E[Mt+1 −Mt|X0, X1, . . . , Xt] = E[f(Xt+1)|Xt]− E[f(Xt+1)|Xt] = 0,

which shows that Mt is a martingale with respect to X .

For the reverse implication: Let f(Xt) = IXt=x. Then,

Mt+1 −Mt = IXt+1=x − E[IXt+1=x|Xt].

By assumption, E[Mt+1 −Mt|X0, X1, . . . , Xt] = 0 since M is a martingale with respect to X . By conditioning, we
obtain:

E[IXt+1=x|X0, X1, . . . , Xt] = E[E[IXt+1=x|Xt]|X0, X1, . . . , Xt]

or
P (Xt+1|X0, X1, . . . , Xt) = P (Xt+1|Xt),

since x is arbitrary, i.e., X is a Markov process.


