ECE534 Random Processes
 Spring 2020

University of Illinois at Urbana-Champaign Gaussianity, Markov Chains and Martingales

HW 4: Solution

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1

1. Let $\alpha=\frac{1}{2}\left(\frac{1}{\sqrt{1+\rho}}+\frac{1}{\sqrt{1-\rho}}\right)$ and $\beta=\frac{1}{2}\left(\frac{1}{\sqrt{1+\rho}}-\frac{1}{\sqrt{1-\rho}}\right)$. Note that any linear combination of W, Z corresponds to a linear combination of X, Y :

$$
a W+b Z=(a \alpha+b \beta) X+(a \beta+b \alpha) Y
$$

which is Gaussian since X, Y are jointly Gaussian. Therefore, W and Z are jointly Gaussian.
2. From (a), W and Z have a bi-variate Gaussian density, determined by the mean vector and covariance matrix. Clearly, $\mu_{W}=\mu_{Z}=0$. For the variances and the correlation coefficient, we have:

$$
\begin{aligned}
\sigma_{Z}^{2}=\sigma_{W}^{2}=\operatorname{Cov}(W, W) & =\frac{1-\rho^{2}}{(1+\rho)(1-\rho)}=1 \\
\rho_{W, Z} & =\operatorname{Cov}(W, Z)
\end{aligned}=\frac{-\rho+\rho}{(1+\rho)(1-\rho)}=0 .
$$

Therefore, $W Z$ are uncorrelated (hence independent, being jointly Gaussian). This shows that for $w, z \in \mathbb{R}$:

$$
f_{W Z}(w, z)=f_{W}(w) f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{w^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}=\frac{1}{2 \pi} e^{-\frac{w^{2}+z^{2}}{2}}
$$

3. The MMSE estimator of Z given W is the conditional mean $E[Z \mid W]$. Since Z, W are independent, we have

$$
E[Z \mid W]=E[Z]=\mu_{Z}=0
$$

4. A straightforward computation gives $\operatorname{Cov}(X, W)=\frac{1}{2}(\sqrt{1+\rho}+\sqrt{1-\rho})$. We now have:

$$
\hat{E}[X \mid W]=\mu_{X}+\frac{\operatorname{Cov}(X, W)}{\sigma_{W}^{2}}\left(W-\mu_{W}\right)=\frac{1}{2}(\sqrt{1+\rho}+\sqrt{1-\rho}) W
$$

Problem 2

By Bayes rule:

$$
P\left(X_{n}=1 \mid Y_{n}=1\right)=\frac{P\left(Y_{n}=1 \mid X_{n}=1\right) P\left(X_{n}=1\right)}{P\left(Y_{n}=1\right)}
$$

Also, by the definition of Y_{n},

$$
P\left(Y_{n}=1 \mid X_{n}=1\right)=P\left(Y_{n}=X_{n}\right)=0.9
$$

We now solve for the stationary distribution of the DTMC by solving for $\pi=\left(\pi_{1}, \pi_{2}\right)$ the equation $\pi P=\pi$ subject to $\pi_{1}+\pi_{2}=1$. The solution is:

$$
\pi_{1}=1 / 3, \quad \pi_{2}=2 / 3
$$

In this case, one can check that the stationary distribution is also limiting and therefore

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=1\right)=\pi_{1}=1 / 3, \quad \lim _{n \rightarrow \infty} P\left(X_{n}=2\right)=\pi_{2}=2 / 3
$$

Also, by total probability

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(Y_{n}=1\right) & =\lim _{n \rightarrow \infty} P\left(Y_{n}=1 \mid X_{n}=1\right) P\left(X_{n}=1\right)+P\left(Y_{n}=1 \mid X_{n}=2\right) P\left(X_{n}=2\right) \\
& =\frac{1}{3} 0.9+\frac{2}{3} 0.1
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=1 \mid Y_{n}=1\right)=P\left(Y_{n}=1 \mid X_{n}=1\right) \lim _{n \rightarrow \infty} \frac{P\left(X_{n}=1\right)}{P\left(Y_{n}=1\right)}=\frac{0.9 \frac{1}{3}}{\frac{1}{3} 0.9+\frac{2}{3} 0.1}=\frac{9}{11}
$$

Problem 3

Let X be a finite state Markov chain. Then,

$$
\left|M_{t}\right| \leq\left|f\left(X_{t}\right)\right|+\left|f\left(X_{0}\right)\right|+\sum_{s=0}^{t-1}\left|\left(E\left[f\left(X_{s+1}\right) \mid X_{s}\right]-f\left(X_{s}\right)\right)\right|<\infty
$$

Additionally,

$$
M_{t+1}-M_{t}=f\left(X_{t+1}\right)-f\left(X_{t}\right)-E\left[f\left(X_{t+1}\right) \mid X_{t}\right]+f\left(X_{t}\right)=f\left(X_{t+1}\right)-E\left[f\left(X_{t+1}\right) \mid X_{t}\right]
$$

Therefore,

$$
E\left[M_{t+1}-M_{t} \mid X_{0}, X_{1}, \ldots, X_{t}\right]=E\left[f\left(X_{t+1}\right) \mid X_{t}\right]-E\left[f\left(X_{t+1}\right) \mid X_{t}\right]=0
$$

which shows that M_{t} is a martingale with respect to X.
For the reverse implication: Let $f\left(X_{t}\right)=\mathbb{I}_{X_{t}=x}$. Then,

$$
M_{t+1}-M_{t}=\mathbb{I}_{X_{t+1}=x}-E\left[\mathbb{I}_{X_{t+1}=x} \mid X_{t}\right]
$$

By assumption, $E\left[M_{t+1}-M_{t} \mid X_{0}, X_{1}, \ldots, X_{t}\right]=0$ since M is a martingale with respect to X. By conditioning, we obtain:

$$
E\left[\mathbb{I}_{X_{t+1}=x} \mid X_{0}, X_{1}, \ldots, X_{t}\right]=E\left[E\left[\mathbb{I}_{X_{t+1}=x} \mid X_{t}\right] \mid X_{0}, X_{1}, \ldots, X_{t}\right]
$$

or

$$
P\left(X_{t+1} \mid X_{0}, X_{1}, \ldots, X_{t}\right)=P\left(X_{t+1} \mid X_{t}\right)
$$

since x is arbitrary, i.e., X is a Markov process.

