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Problem 1

l. Letaw = 3 ( \/11+—p + ﬁ) and 8 = 3 ( \/114Tp — \/ffp) Note that any linear combination of W, Z corre-

sponds to a linear combination of X, Y:

aW 4+ bZ = (aa + b8) X + (aff + b)Y,
which is Gaussian since X, Y are jointly Gaussian. Therefore, W and Z are jointly Gaussian.

2. From (a), W and Z have a bi-variate Gaussian density, determined by the mean vector and covariance matrix.
Clearly, uw = pz = 0. For the variances and the correlation coefficient, we have:

1—p?
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0% = oy = Cov(W.W) = -1,
2= ow =W = )
—p+p
pwz =CoviW,Z) = ————F———— =0
e [
Therefore, W Z are uncorrelated (hence independent, being jointly Gaussian). This shows that for w, z € R:
1 w2 1 22 1 w2422
fwz(w,2) = fw(w)fz(z) 2 > = :

= ——e T —e = —e¢
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3. The MMSE estimator of Z given W is the conditional mean E[Z|W]. Since Z, W are independent, we have
E[Z\WW]=E[Z] =pz =0.

4. A straightforward computation gives Cov(X, W) = 1 (T + p+ /T = p). We now have:

A Cov(X, W 1
E[X|W]:ux+%(quw):§( 1+p+\/17p)W.
w

Problem 2

By Bayes rule:
PY,=1X,=1)P(X,=1)
PY,=1)

P(X, =1V, =1) =

Also, by the definition of Y,,,
P(Y, =1X, =1) = P(Y, = X;,) = 0.9.

We now solve for the stationary distribution of the DTMC by solving for 7 = (71, 72) the equation 7P = 7 subject

to m1 + m9 = 1. The solution is:

M = 1/3, T2 :2/3
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In this case, one can check that the stationary distribution is also limiting and therefore

lim P(X, =1)=m =1/3, lim P(X, =2)=m =2/3.
n—oo

n—oo

Also, by total probability

lim P(Y, =1)= lim P(Y, =1|X, = 1)P(X, = 1) + P(Y, = 1|X,, = 2)P(X,, = 2)

n— oo n— 00
= 1O 9+ 20 1
= 30. 30-1
Therefore,
P(X,=1) 0.9% 9
lim P(X, =1y, =1)=P(Y,, =1|X,, =1) li - = 3 = —.
A PG =1 = 1) = PO = 1% = 1) I 55—y = Tog+ 201~ 11
Problem 3
Let X be a finite state Markov chain. Then,
t—1
M| < [F(X0)] + 1£(Xo)| + D I(BLf(Xep1)| Xo] = F(Xs))| < oo
s=0

Additionally,
M1 — My = f(Xpg1) = f(Xe) = E[f (Xes) | Xe] + f(Xe) = F(Xig1) — E[f (Xet1) [ Xe].

Therefore,
E[M;i11 — M| Xo, X1,..., X¢] = E[f(Xe 1) Xe] — B[f(Xe41)|Xe] =0,

which shows that M, is a martingale with respect to X.

For the reverse implication: Let f(X;) = Ix,—.. Then,

Miyr — My = Ix, =0 — Ellx, = | X4].
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By assumption, E[M;1 — M| Xo, X1,...,X¢] = 0 since M is a martingale with respect to X. By conditioning, we

obtain:
E[}IXHr1=w|X0,X17 Xy = E[E[]Ixt+1=x|Xt]|X0,X1, ooy Xi)

or
P(Xt+1|X07X17 .o 7Xt) = P(Xt+1|Xt)7

since x is arbitrary, i.e., X is a Markov process.



