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Problem 1

The sequence has only two outcomes (or sample paths) depending on X1:
X1 = 1 : Then X1X2 . . . = 10101010 . . .
X1 = 0 : Then X1X2 . . . = 01010101 . . .

Due to the oscillatory nature of the sample paths, it is easy to see that {Xn} does not converge almost surely and in
probability. Moreover, by Proposition 2.7 in the book, {Xn} does not converge in m.s. sense. Finally, as n→∞, the
value of Xn is determined by X1 and therefore, Xn ∼ Ber

(
1
2

)
,∀n ≥ 1 (due to X1), hence Xn

d−→ Ber
(
1
2

)
.

Problem 2

Without loss of generality, take X = 0. We want to show that Xn
p−→ 0 if and only if limn→∞E

[
|Xn|

1+|Xn|

]
= 0.

(i) Xn
p−→ 0 =⇒ limn→∞E

[
|Xn|

1+|Xn|

]
= 0.

By Xn
p−→ 0, we have that ∀ε > 0 : limn→∞ P (|Xn| > ε) = 0. Note that

|Xn|
1 + |Xn|

≤ |Xn|
1 + |Xn|

1[|Xn| > ε] + ε1[|Xn| ≤ ε] ≤ 1[|Xn| > ε] + ε.

Therefore,

E

[
|Xn|

1 + |Xn|

]
≤ E[1[|Xn| > ε]] + ε = P (|Xn| > ε) + ε.

Taking the limit, we obtain limn→∞E
[
|Xn|

1+|Xn|

]
≤ ε, and since ε > 0 is arbitrary, we have that limn→∞E

[
|Xn|

1+|Xn|

]
=

0.

(ii) limn→∞E
[
|Xn|

1+|Xn|

]
= 0 =⇒ Xn

p−→ 0.

Observe that the function f(x) = x
x+1 is increasing. Therefore,

ε

1 + ε
1[|Xn| > ε] ≤ |Xn|

1 + |Xn|
1[|Xn| > ε] ≤ |Xn|

1 + |Xn|
.
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Taking expectations and then limits to both sides, we obtain:

ε

1 + ε
lim
n→∞

P (|Xn| > ε) ≤ lim
n→∞

E

[
|Xn|
|Xn|+ 1

]
= 0

Since this holds for any ε > 0, we have that limn→∞ P (|Xn| > ε) = 0, ∀ε > 0. Therefore, Xn
p−→ 0.

Problem 3

Let Yn = max{X1, ..., Xn}. For ε > 0, we have

P

(
max(X1, ..., Xn)

log n
< 1− ε

)
= P

(
Yn

log n
< 1− ε

)
= P (Yn < (1− ε) log n) = P (∩ni=1{Xi < (1− ε) log n})

=
(

1− e−(1−ε) logn
)n

=

(
1− 1

n1−ε

)n
=

((
1− 1

n1−ε

)n1−ε)nε

Using part (a) in the Borel-Cantelli lemma,

∞∑
n=1

P

(
Yn

log n
< 1− ε

)
=

∞∑
n=1

[(
1− 1

n1−ε

)n1−ε]nε

≤
∞∑
n=1

(
e−1
)nε

<∞.

Therefore, P
(

Yn
logn < 1− ε i.o.

)
= 0. Using similar steps and focusing on the random variable Xn, we have

P

(
Xn

log n
> 1 + ε

)
= e− logn(1+ε) =

1

n1+ε
.

Therefore,

∞∑
n=1

P

(
Xn

log n
> 1 + ε

)
=

∞∑
n=1

1

n1+ε
<∞.

By part (a) in the Borel-Cantelli lemma, P
(
Xn
logn > 1 + ε i.o.

)
= 0. Also,

∑∞
n=1 P

(
Xn
logn > 1− ε

)
=
∑∞
n=1

1
n1−ε =

∞. By part (b) in the Borel-Cantelli lemma, P
(
Xn
logn > 1− ε i.o.

)
= 1. Combining the above results,

lim sup
n

Xn

log n
= 1 a.s.

and therefore, P
(
Xn
logn > 1 + ε i.o.

)
= 0. Hence,

Yn
log n

=
max1≤i≤nXi

log n

a.s.−−−−→
n→∞

1.
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Problem 4

1. By applying the Chernoff bound, we obtain:

P (X > t) = P
(
euX > eut

)
≤

mX(u)︷ ︸︸ ︷
E
(
euX

)
eut

, (3.1)

which holds for any u > 0. By subgaussianity,

mX(u) ≤ eσ
2u2/2. (3.2)

Plugging (3.2) into (3.1) gives

P (X > t) ≤ eσ
2u2

2 −ut = eφ(u), (3.3)

where φ(u) := σ2u2

2 − ut. Choose u∗ = t
σ2 , which minimizes φ(u) to obtain φ(u∗) = − t2

2σ2 . Therefore,

P (X > t) ≤ eφ(u∗) = e−
t2

2σ2

as required.

2. Using the hint,

E(max
i
Xi) =

1

λ
E
(
log
(
eλmaxiXi

))
≤ 1

λ
log
(
E
(
eλmaxiXi

))
(Jensen, concavity of log(·))

=
1

λ
log
(
E
(

max
i
eλXi

))
(Monotonicity of ex)

≤ 1

λ
log

(
E

(
n∑
i=1

eλXi

)) (
max
i
Xi ≤

∑
i

Xi

)

≤ 1

λ
log
(
ne

λ2σ2

2

)
(subgaussianity)

=
log n

λ
+
λσ2

2︸ ︷︷ ︸
g(λ)

.

Minimizing g(λ) by setting its derivative to zero, we obtain λ∗ =
√
2 logn
2σ for which we have

E[max
i
Xi] ≤ σ

√
2 log n.

3. Invoking the union bound and part (a) we obtain:

P

(
max
1≤i≤n

Xi > t

)
= P

(
n⋃
i=1

{Xi > t}

)
≤

n∑
i=1

P (Xi > t)︸ ︷︷ ︸
≤e−

t2

2σ2

≤ ne−
t2

2σ2 .
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Problem 5

Let Xn
p−−−−→

n→∞
X . Since |Xn| ≤ Y, ∀n we conclude that |X| ≤ Y almost surely. Moreover Vn = |Xn − X| ≤

|Xn|+ |X| ≤ 2Y almost surely. Choose ε > 0 and fix it. By part (c) in Problem 7 we have E[Vn] = E[Vn1Vn≤ε] +

E[Vn1Vn>ε] ≤ E[ε1Vn≤ε] + 2E[Y 1Vn>ε] ≤ ε+ 2E[Y 1Vn>ε]. By Xn
p−−−−→

n→∞
X , we have that P (Vn > ε) −−−−→

n→∞
0.

Using the assumption that E[Y ] <∞ and part (a), we conclude that E[Y 1Vn>ε] −−−−→
n→∞

0. Letting now ε→ 0 results

in E[Vn] −−−−→
n→∞

0.

Problem 6

Set A can be expressed as A =
⋂∞
n=1

⋃∞
m=1

⋂∞
r=1{|Xm+r − Xm| ≤ εn} for εn −−−−→

n→∞
0. Therefore, A ∈ F.

Furthermore, we can define the random variable X : Ω → R as X(ω) = limnXn(ω) for ω ∈ A and 0 otherwise.
Clearly, X is F-measurable since A ∈ F.

Problem 7

By the given hints, g is bounded and uniformly continuous on [0, 1]. Therefore, ∃K > 0 such that |g(x)| ≤ K,∀x ∈
[0, 1] and also ∀ε > 0,∃δ > 0 such that |g(x)− g(x̃)| < ε for |x− x̃| < δ with x, x̃ ∈ [0, 1]. By parts (b) and (c),

|E[Xn]| ≤ E[|Xn|1C ] + E[|Xn|1Cc ] ≤ ε+ 2KP (Cc) ≤ ε+ 2K
x(1− x)

nδ2
,

for any ε > 0 and an associated δ > 0. Here, Chebyshev’s inequality has been used. For sufficiently large n,
2K x(1−x)

nδ2 ≤ ε, i.e, |E[Xn]| = O(ε). Since ε is arbitrary, the result follows.


