ECE534 Random Processes

Spring 2020

HW 3: Solution

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1

The sequence has only two outcomes (or sample paths) depending on X_{1} :
$X_{1}=1$: Then $X_{1} X_{2} \ldots=10101010 \ldots$
$X_{1}=0:$ Then $X_{1} X_{2} \ldots=01010101 \ldots$

Due to the oscillatory nature of the sample paths, it is easy to see that $\left\{X_{n}\right\}$ does not converge almost surely and in probability. Moreover, by Proposition 2.7 in the book, $\left\{X_{n}\right\}$ does not converge in m.s. sense. Finally, as $n \rightarrow \infty$, the value of X_{n} is determined by X_{1} and therefore, $X_{n} \sim \operatorname{Ber}\left(\frac{1}{2}\right), \forall n \geq 1$ (due to X_{1}), hence $X_{n} \xrightarrow{d} \operatorname{Ber}\left(\frac{1}{2}\right)$.

Problem 2

Without loss of generality, take $X=0$. We want to show that $X_{n} \xrightarrow{p} 0$ if and only if $\lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]=0$.
(i) $X_{n} \xrightarrow{p} 0 \Longrightarrow \lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]=0$.

By $X_{n} \xrightarrow{p} 0$, we have that $\forall \epsilon>0: \lim _{n \rightarrow \infty} P\left(\left|X_{n}\right|>\epsilon\right)=0$. Note that

$$
\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|} \leq \frac{\left|X_{n}\right|}{1+\left|X_{n}\right|} \mathbb{1}\left[\left|X_{n}\right|>\epsilon\right]+\epsilon \mathbb{1}\left[\left|X_{n}\right| \leq \epsilon\right] \leq \mathbb{1}\left[\left|X_{n}\right|>\epsilon\right]+\epsilon
$$

Therefore,

$$
E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \leq E\left[\mathbb{1}\left[\left|X_{n}\right|>\epsilon\right]\right]+\epsilon=P\left(\left|X_{n}\right|>\epsilon\right)+\epsilon
$$

Taking the limit, we obtain $\lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right] \leq \epsilon$, and since $\epsilon>0$ is arbitrary, we have that $\lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]=$ 0 .
(ii) $\lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}\right]=0 \Longrightarrow X_{n} \xrightarrow{p} 0$.

Observe that the function $f(x)=\frac{x}{x+1}$ is increasing. Therefore,

$$
\frac{\epsilon}{1+\epsilon} \mathbb{1}\left[\left|X_{n}\right|>\epsilon\right] \leq \frac{\left|X_{n}\right|}{1+\left|X_{n}\right|} \mathbb{1}\left[\left|X_{n}\right|>\epsilon\right] \leq \frac{\left|X_{n}\right|}{1+\left|X_{n}\right|}
$$

Taking expectations and then limits to both sides, we obtain:

$$
\frac{\epsilon}{1+\epsilon} \lim _{n \rightarrow \infty} P\left(\left|X_{n}\right|>\epsilon\right) \leq \lim _{n \rightarrow \infty} E\left[\frac{\left|X_{n}\right|}{\left|X_{n}\right|+1}\right]=0
$$

Since this holds for any $\epsilon>0$, we have that $\lim _{n \rightarrow \infty} P\left(\left|X_{n}\right|>\epsilon\right)=0, \forall \epsilon>0$. Therefore, $X_{n} \xrightarrow{p} 0$.

Problem 3

Let $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. For $\epsilon>0$, we have

$$
\begin{aligned}
P\left(\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\log n}<1-\epsilon\right) & =P\left(\frac{Y_{n}}{\log n}<1-\epsilon\right) \\
& =P\left(Y_{n}<(1-\epsilon) \log n\right)=P\left(\cap_{i=1}^{n}\left\{X_{i}<(1-\epsilon) \log n\right\}\right) \\
& =\left(1-e^{-(1-\epsilon) \log n}\right)^{n} \\
& =\left(1-\frac{1}{n^{1-\epsilon}}\right)^{n}=\left(\left(1-\frac{1}{n^{1-\epsilon}}\right)^{n^{1-\epsilon}}\right)^{n^{\epsilon}}
\end{aligned}
$$

Using part (a) in the Borel-Cantelli lemma,

$$
\begin{aligned}
\sum_{n=1}^{\infty} P\left(\frac{Y_{n}}{\log n}<1-\epsilon\right)=\sum_{n=1}^{\infty} & {\left[\left(1-\frac{1}{n^{1-\epsilon}}\right)^{n^{1-\epsilon}}\right]^{n^{\epsilon}} } \\
& \leq \sum_{n=1}^{\infty}\left(e^{-1}\right)^{n^{\epsilon}}<\infty
\end{aligned}
$$

Therefore, $P\left(\frac{Y_{n}}{\log n}<1-\epsilon\right.$ i.o. $)=0$. Using similar steps and focusing on the random variable X_{n}, we have

$$
P\left(\frac{X_{n}}{\log n}>1+\epsilon\right)=e^{-\log n(1+\epsilon)}=\frac{1}{n^{1+\epsilon}}
$$

Therefore,

$$
\sum_{n=1}^{\infty} P\left(\frac{X_{n}}{\log n}>1+\epsilon\right)=\sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}}<\infty
$$

By part (a) in the Borel-Cantelli lemma, $P\left(\frac{X_{n}}{\log n}>1+\epsilon\right.$ i.o. $)=0$. Also, $\sum_{n=1}^{\infty} P\left(\frac{X_{n}}{\log n}>1-\epsilon\right)=\sum_{n=1}^{\infty} \frac{1}{n^{1-\epsilon}}=$ ∞. By part (b) in the Borel-Cantelli lemma, $P\left(\frac{X_{n}}{\log n}>1-\epsilon\right.$ i.o. $)=1$. Combining the above results,

$$
\limsup _{n} \frac{X_{n}}{\log n}=1 \text { a.s. }
$$

and therefore, $P\left(\frac{X_{n}}{\log n}>1+\epsilon\right.$ i.o. $)=0$. Hence,

$$
\frac{Y_{n}}{\log n}=\frac{\max _{1 \leq i \leq n} X_{i}}{\log n} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 1 .
$$

Problem 4

1. By applying the Chernoff bound, we obtain:

$$
\begin{equation*}
P(X>t)=P\left(e^{u X}>e^{u t}\right) \leq \frac{\overbrace{E\left(e^{u X}\right)}^{m_{X}(u)}}{e^{u t}}, \tag{3.1}
\end{equation*}
$$

which holds for any $u>0$. By subgaussianity,

$$
\begin{equation*}
m_{X}(u) \leq e^{\sigma^{2} u^{2} / 2} \tag{3.2}
\end{equation*}
$$

Plugging (3.2) into (3.1) gives

$$
\begin{equation*}
P(X>t) \leq e^{\frac{\sigma^{2} u^{2}}{2}-u t}=e^{\phi(u)} \tag{3.3}
\end{equation*}
$$

where $\phi(u):=\frac{\sigma^{2} u^{2}}{2}-u t$. Choose $u_{*}=\frac{t}{\sigma^{2}}$, which minimizes $\phi(u)$ to obtain $\phi\left(u_{*}\right)=-\frac{t^{2}}{2 \sigma^{2}}$. Therefore,

$$
P(X>t) \leq e^{\phi\left(u_{*}\right)}=e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

as required.
2. Using the hint,

$$
\begin{array}{rlr}
E\left(\max _{i} X_{i}\right) & =\frac{1}{\lambda} E\left(\log \left(e^{\lambda \max _{i} X_{i}}\right)\right) \\
& \leq \frac{1}{\lambda} \log \left(E\left(e^{\lambda \max _{i} X_{i}}\right)\right) & \\
& =\frac{1}{\lambda} \log \left(E\left(\max _{i} e^{\lambda X_{i}}\right)\right) & \quad \text { (Jensen, concavity of } \log (\cdot)) \\
& \leq \frac{1}{\lambda} \log \left(E\left(\sum_{i=1}^{n} e^{\lambda X_{i}}\right)\right) & \left(\max _{i} X_{i} \leq \sum_{i} X_{i}\right) \\
& \leq \underbrace{\frac{1}{\lambda} \log \left(n e^{\frac{\lambda^{2} \sigma^{2}}{2}}\right)}_{g(\lambda)} \\
& =\underbrace{\frac{\log n}{\lambda}+\frac{\lambda \sigma^{2}}{2}} . &
\end{array}
$$

Minimizing $g(\lambda)$ by setting its derivative to zero, we obtain $\lambda_{*}=\frac{\sqrt{2 \log n}}{2 \sigma}$ for which we have

$$
E\left[\max _{i} X_{i}\right] \leq \sigma \sqrt{2 \log n}
$$

3. Invoking the union bound and part (a) we obtain:

$$
P\left(\max _{1 \leq i \leq n} X_{i}>t\right)=P\left(\bigcup_{i=1}^{n}\left\{X_{i}>t\right\}\right) \leq \sum_{i=1}^{n} \underbrace{P\left(X_{i}>t\right)}_{\leq e^{-\frac{t^{2}}{2 \sigma^{2}}}} \leq n e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

Problem 5

Let $X_{n} \xrightarrow[n \rightarrow \infty]{p} X$. Since $\left|X_{n}\right| \leq Y, \forall n$ we conclude that $|X| \leq Y$ almost surely. Moreover $V_{n}=\left|X_{n}-X\right| \leq$ $\left|X_{n}\right|+|X| \leq 2 Y$ almost surely. Choose $\epsilon>0$ and fix it. By part (c) in Problem 7 we have $E\left[V_{n}\right]=E\left[V_{n} \mathbb{1}_{V_{n} \leq \epsilon}\right]+$ $E\left[V_{n} \mathbb{1}_{V_{n}>\epsilon}\right] \leq E\left[\epsilon \mathbb{1}_{V_{n} \leq \epsilon}\right]+2 E\left[Y \mathbb{1}_{V_{n}>\epsilon}\right] \leq \epsilon+2 E\left[Y \mathbb{1}_{V_{n}>\epsilon}\right]$. By $X_{n} \xrightarrow[n \rightarrow \infty]{p} X$, we have that $P\left(V_{n}>\epsilon\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$. Using the assumption that $E[Y]<\infty$ and part (a), we conclude that $E\left[Y \mathbb{1}_{V_{n}>\epsilon}\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$. Letting now $\epsilon \rightarrow 0$ results in $E\left[V_{n}\right] \xrightarrow[n \rightarrow \infty]{ } 0$.

Problem 6

Set A can be expressed as $A=\bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{r=1}^{\infty}\left\{\left|X_{m+r}-X_{m}\right| \leq \epsilon_{n}\right\}$ for $\epsilon_{n} \xrightarrow[n \rightarrow \infty]{ } 0$. Therefore, $A \in \mathcal{F}$. Furthermore, we can define the random variable $X: \Omega \rightarrow \mathbb{R}$ as $X(\omega)=\lim _{n} X_{n}(\omega)$ for $\omega \in A$ and 0 otherwise. Clearly, X is \mathcal{F}-measurable since $A \in \mathcal{F}$.

Problem 7

By the given hints, g is bounded and uniformly continuous on $[0,1]$. Therefore, $\exists K>0$ such that $|g(x)| \leq K, \forall x \in$ $[0,1]$ and also $\forall \epsilon>0, \exists \delta>0$ such that $|g(x)-g(\tilde{x})|<\epsilon$ for $|x-\tilde{x}|<\delta$ with $x, \tilde{x} \in[0,1]$. By parts (b) and (c),

$$
\left|E\left[X_{n}\right]\right| \leq E\left[\left|X_{n}\right| \mathbb{1}_{C}\right]+E\left[\left|X_{n}\right| \mathbb{1}_{C^{c}}\right] \leq \epsilon+2 K P\left(C^{c}\right) \leq \epsilon+2 K \frac{x(1-x)}{n \delta^{2}}
$$

for any $\epsilon>0$ and an associated $\delta>0$. Here, Chebyshev's inequality has been used. For sufficiently large n, $2 K \frac{x(1-x)}{n \delta^{2}} \leq \epsilon$, i.e, $\left|E\left[X_{n}\right]\right|=O(\epsilon)$. Since ϵ is arbitrary, the result follows.

