ECE534 Random Processes Spring 2020 University of Illinois at Urbana-Champaign Sequences of Random Variables and Subgaussianity

HW 3: Solution

Instructor: Dimitrios Katselis

TAs: Leda Sari, Amish Goel

Problem 1

The sequence has only two outcomes (or sample paths) depending on X_1 : $X_1 = 1$: Then $X_1 X_2 \ldots = 10101010 \ldots$ $X_1 = 0$: Then $X_1 X_2 \ldots = 01010101 \ldots$

Due to the oscillatory nature of the sample paths, it is easy to see that $\{X_n\}$ does not converge almost surely and in probability. Moreover, by Proposition 2.7 in the book, $\{X_n\}$ does not converge in m.s. sense. Finally, as $n \to \infty$, the value of X_n is determined by X_1 and therefore, $X_n \sim \text{Ber}\left(\frac{1}{2}\right)$, $\forall n \ge 1$ (due to X_1), hence $X_n \xrightarrow{d} \text{Ber}\left(\frac{1}{2}\right)$.

Problem 2

Without loss of generality, take X = 0. We want to show that $X_n \xrightarrow{p} 0$ if and only if $\lim_{n \to \infty} E\left[\frac{|X_n|}{1+|X_n|}\right] = 0$.

(i)
$$X_n \xrightarrow{p} 0 \Longrightarrow \lim_{n \to \infty} E\left[\frac{|X_n|}{1+|X_n|}\right] = 0.$$

By $X_n \xrightarrow{p} 0$, we have that $\forall \epsilon > 0 : \lim_{n \to \infty} P(|X_n| > \epsilon) = 0$. Note that

$$\frac{|X_n|}{1+|X_n|} \le \frac{|X_n|}{1+|X_n|} \mathbb{1}[|X_n| > \epsilon] + \epsilon \mathbb{1}[|X_n| \le \epsilon] \le \mathbb{1}[|X_n| > \epsilon] + \epsilon.$$

Therefore,

$$E\left[\frac{|X_n|}{1+|X_n|}\right] \le E[\mathbb{1}[|X_n| > \epsilon]] + \epsilon = P(|X_n| > \epsilon) + \epsilon.$$

Taking the limit, we obtain $\lim_{n\to\infty} E\left[\frac{|X_n|}{1+|X_n|}\right] \le \epsilon$, and since $\epsilon > 0$ is arbitrary, we have that $\lim_{n\to\infty} E\left[\frac{|X_n|}{1+|X_n|}\right] = 0$.

(ii) $\lim_{n \to \infty} E\left[\frac{|X_n|}{1+|X_n|}\right] = 0 \Longrightarrow X_n \xrightarrow{p} 0.$

Observe that the function $f(x) = \frac{x}{x+1}$ is increasing. Therefore,

$$\frac{\epsilon}{1+\epsilon}\mathbbm{1}[|X_n|>\epsilon] \le \frac{|X_n|}{1+|X_n|}\mathbbm{1}[|X_n|>\epsilon] \le \frac{|X_n|}{1+|X_n|}.$$

Taking expectations and then limits to both sides, we obtain:

$$\frac{\epsilon}{1+\epsilon} \lim_{n \to \infty} P(|X_n| > \epsilon) \le \lim_{n \to \infty} E\left[\frac{|X_n|}{|X_n|+1}\right] = 0$$

Since this holds for any $\epsilon > 0$, we have that $\lim_{n \to \infty} P(|X_n| > \epsilon) = 0, \ \forall \epsilon > 0$. Therefore, $X_n \xrightarrow{p} 0$.

Problem 3

Let $Y_n = \max\{X_1, ..., X_n\}$. For $\epsilon > 0$, we have

$$P\left(\frac{\max(X_1, \dots, X_n)}{\log n} < 1 - \epsilon\right) = P\left(\frac{Y_n}{\log n} < 1 - \epsilon\right)$$
$$= P\left(Y_n < (1 - \epsilon)\log n\right) = P\left(\bigcap_{i=1}^n \{X_i < (1 - \epsilon)\log n\}\right)$$
$$= \left(1 - e^{-(1 - \epsilon)\log n}\right)^n$$
$$= \left(1 - \frac{1}{n^{1 - \epsilon}}\right)^n = \left(\left(1 - \frac{1}{n^{1 - \epsilon}}\right)^{n^{1 - \epsilon}}\right)^{n^{\epsilon}}$$

Using part (a) in the Borel-Cantelli lemma,

$$\sum_{n=1}^{\infty} P\left(\frac{Y_n}{\log n} < 1 - \epsilon\right) = \sum_{n=1}^{\infty} \left[\left(1 - \frac{1}{n^{1-\epsilon}}\right)^{n^{1-\epsilon}} \right]^{n^{\epsilon}}$$
$$\leq \sum_{n=1}^{\infty} \left(e^{-1}\right)^{n^{\epsilon}} < \infty.$$

Therefore, $P\left(\frac{Y_n}{\log n} < 1 - \epsilon \text{ i.o.}\right) = 0$. Using similar steps and focusing on the random variable X_n , we have

$$P\left(\frac{X_n}{\log n} > 1 + \epsilon\right) = e^{-\log n(1+\epsilon)} = \frac{1}{n^{1+\epsilon}}$$

Therefore,

$$\sum_{n=1}^{\infty} P\left(\frac{X_n}{\log n} > 1 + \epsilon\right) = \sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}} < \infty.$$

By part (a) in the Borel-Cantelli lemma, $P\left(\frac{X_n}{\log n} > 1 + \epsilon \text{ i.o.}\right) = 0$. Also, $\sum_{n=1}^{\infty} P\left(\frac{X_n}{\log n} > 1 - \epsilon\right) = \sum_{n=1}^{\infty} \frac{1}{n^{1-\epsilon}} = \infty$. By part (b) in the Borel-Cantelli lemma, $P\left(\frac{X_n}{\log n} > 1 - \epsilon \text{ i.o.}\right) = 1$. Combining the above results,

$$\limsup_{n} \frac{X_n}{\log n} = 1 \text{ a.s}$$

and therefore, $P\left(\frac{X_n}{\log n} > 1 + \epsilon \text{ i.o.}\right) = 0$. Hence,

$$\frac{Y_n}{\log n} = \frac{\max_{1 \le i \le n} X_i}{\log n} \xrightarrow[n \to \infty]{a.s.} 1.$$

Problem 4

1. By applying the Chernoff bound, we obtain:

$$P(X > t) = P\left(e^{uX} > e^{ut}\right) \le \frac{\overbrace{E\left(e^{uX}\right)}^{m_X(u)}}{e^{ut}},$$
(3.1)

which holds for any u > 0. By subgaussianity,

$$m_X(u) \le e^{\sigma^2 u^2/2}.$$
 (3.2)

Plugging (3.2) into (3.1) gives

$$P(X > t) \le e^{\frac{\sigma^2 u^2}{2} - ut} = e^{\phi(u)},$$
(3.3)

where $\phi(u) := \frac{\sigma^2 u^2}{2} - ut$. Choose $u_* = \frac{t}{\sigma^2}$, which minimizes $\phi(u)$ to obtain $\phi(u_*) = -\frac{t^2}{2\sigma^2}$. Therefore,

$$P(X > t) \le e^{\phi(u_*)} = e^{-\frac{t^2}{2\sigma^2}}$$

as required.

2. Using the hint,

$$E(\max_{i} X_{i}) = \frac{1}{\lambda} E\left(\log\left(e^{\lambda \max_{i} X_{i}}\right)\right)$$

$$\leq \frac{1}{\lambda} \log\left(E\left(e^{\lambda \max_{i} X_{i}}\right)\right) \qquad \text{(Jensen, concavity of } \log(\cdot)\text{)}$$

$$= \frac{1}{\lambda} \log\left(E\left(\max_{i} e^{\lambda X_{i}}\right)\right) \qquad \text{(Monotonicity of } e^{x}\text{)}$$

$$\leq \frac{1}{\lambda} \log\left(E\left(\sum_{i=1}^{n} e^{\lambda X_{i}}\right)\right) \qquad \left(\max_{i} X_{i} \leq \sum_{i} X_{i}\right)$$

$$\leq \frac{1}{\lambda} \log\left(ne^{\frac{\lambda^{2}\sigma^{2}}{2}}\right) \qquad \text{(subgaussianity)}$$

$$= \underbrace{\log n}_{\lambda} + \frac{\lambda\sigma^{2}}{2}.$$

Minimizing $g(\lambda)$ by setting its derivative to zero, we obtain $\lambda_* = \frac{\sqrt{2\log n}}{2\sigma}$ for which we have $E[\max_i X_i] \le \sigma \sqrt{2\log n}.$

3. Invoking the union bound and part (a) we obtain:

$$P\left(\max_{1 \le i \le n} X_i > t\right) = P\left(\bigcup_{i=1}^n \{X_i > t\}\right) \le \sum_{i=1}^n \underbrace{P(X_i > t)}_{\le e^{-\frac{t^2}{2\sigma^2}}} \le ne^{-\frac{t^2}{2\sigma^2}}.$$

Problem 5

Let $X_n \xrightarrow{p}{n \to \infty} X$. Since $|X_n| \le Y, \forall n$ we conclude that $|X| \le Y$ almost surely. Moreover $V_n = |X_n - X| \le |X_n| + |X| \le 2Y$ almost surely. Choose $\epsilon > 0$ and fix it. By part (c) in Problem 7 we have $E[V_n] = E[V_n \mathbbm{1}_{V_n \le \epsilon}] + E[V_n \mathbbm{1}_{V_n > \epsilon}] \le E[\epsilon \mathbbm{1}_{V_n \ge \epsilon}] + 2E[Y \mathbbm{1}_{V_n > \epsilon}] \le \epsilon + 2E[Y \mathbbm{1}_{V_n > \epsilon}]$. By $X_n \xrightarrow{p}{n \to \infty} X$, we have that $P(V_n > \epsilon) \xrightarrow{n \to \infty} 0$. Using the assumption that $E[Y] < \infty$ and part (a), we conclude that $E[Y \mathbbm{1}_{V_n > \epsilon}] \xrightarrow{n \to \infty} 0$. Letting now $\epsilon \to 0$ results in $E[V_n] \xrightarrow{n \to \infty} 0$.

Problem 6

Set A can be expressed as $A = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{r=1}^{\infty} \{ |X_{m+r} - X_m| \le \epsilon_n \}$ for $\epsilon_n \xrightarrow[n \to \infty]{} 0$. Therefore, $A \in \mathcal{F}$. Furthermore, we can define the random variable $X : \Omega \to \mathbb{R}$ as $X(\omega) = \lim_n X_n(\omega)$ for $\omega \in A$ and 0 otherwise. Clearly, X is \mathcal{F} -measurable since $A \in \mathcal{F}$.

Problem 7

By the given hints, g is bounded and uniformly continuous on [0, 1]. Therefore, $\exists K > 0$ such that $|g(x)| \le K, \forall x \in [0, 1]$ and also $\forall \epsilon > 0, \exists \delta > 0$ such that $|g(x) - g(\tilde{x})| < \epsilon$ for $|x - \tilde{x}| < \delta$ with $x, \tilde{x} \in [0, 1]$. By parts (b) and (c),

$$|E[X_n]| \le E[|X_n| \mathbb{1}_C] + E[|X_n| \mathbb{1}_{C^c}] \le \epsilon + 2KP(C^c) \le \epsilon + 2K\frac{x(1-x)}{n\delta^2},$$

for any $\epsilon > 0$ and an associated $\delta > 0$. Here, Chebyshev's inequality has been used. For sufficiently large n, $2K\frac{x(1-x)}{n\delta^2} \le \epsilon$, i.e, $|E[X_n]| = O(\epsilon)$. Since ϵ is arbitrary, the result follows.