
ECE534, Spring 2020: Problem Set #3
Due Mar 27, 2020

1. All Types of Convergence of Random Sequences

Consider a sequence of random variables X1, X2, . . . with its generic term defined as
follows:

X1 ∼ Ber(1/2) andXn = (Xn−1 + 1) mod 2.

Does this sequence converge almost surely, in probability, in mean square and in
distribution? Justify your answer for each type of convergence separately.

2. Convergence in Probability

Prove that Xn
p−−−→

n→∞
X if and only if

lim
n→∞

E

[
|Xn −X|

1 + |Xn −X|

]
= 0.

3. Almost Sure Convergence [Extra Credit]

Let X1, X2, . . . be a sequence of i.i.d. random variables with P (Xn > x) = e−x, x ≥
0. Show that

max{X1, X2, . . . , Xn}
log n

a.s.−−−→
n→∞

1.

Note: Use the Borel-Cantelli Lemma.

4. Maximum of a Finite Set of sub-Gaussian Random Variables

A random variable X ∈ R is called sub-Gaussian with variance proxy σ2 if E[X] = 0
and its moment generating function satisfies:

mX(u) = E
[
euX

]
≤ e

u2σ2

2 , ∀u ∈ R.

We write X ∼ subG(σ2).

(a) Use the Chernoff bound to show that

P (X > t) ≤ e−
t2

2σ2 , ∀t > 0

when X ∼ subG(σ2).

(b) Let X1, X2, . . . , Xn be subG(σ2) random variables, not necessarily independent.
Show that the expectation of the maximum can be bounded as

E[ max
1≤i≤n

Xi] ≤ σ
√

2 log n.

Hint: Start your derivation by noting that

E[ max
1≤i≤n

Xi] =
1

λ
E
[
log
(
eλmax1≤i≤nXi

)]
, ∀λ > 0.
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(c) With the same assumptions as in the previous part, show that

P

(
max
1≤i≤n

Xi > t

)
≤ ne−

t2

2σ2 , ∀t > 0.

5. Dominated Convergence

Suppose that |Xn| ≤ Y,∀n ≥ 1 and E[Y ] < ∞. Show that if Xn
p−−−→

n→∞
X, then

E[|Xn −X|] −−−→
n→∞

0 (convergence of Xn in mean to X or in the L1 norm).

Notes:

(a) For a random variable Z the following holds: E[|Z|] < ∞ if and only if ∀ε >
0,∃δ > 0 such that E[|Z|1A] < ε for all events A such that P (A) < δ.

(b) Define Vn = |Xn − X|. Start you derivation using Note (b) in Problem 7 for
C = {Vn ≤ ε}, where ε > 0 is fixed. Conclude your derivation using part (a)
by allowing ε to decrease to zero.

6. Sequences of Random Variables and Convergence Sets

Let (Xn)n≥1 be a sequence of random variables on (Ω,F , P ). Consider the set
A = {ω ∈ Ω : (Xn(ω))n≥1 converges}. Show that A ∈ F (i.e., A is an event) and
that there exists a random variable X : Ω→ R, i.e., an F-measurable mapping, such
that Xn(ω)→ X(ω),∀ω ∈ A.

Hint: To show that A ∈ F , try to express it in terms of countable unions and
intersections. Based on this result, identify X.

7. Polynomial Approximation of Continuous Functions [Extra Credit]

Consider a continuous mapping g : [0, 1]→ R. Show that

lim
n→∞

sup
0≤x≤1

∣∣∣∣∣
n∑
k=0

g

(
k

n

)(
n

k

)
xk(1− x)n−k − g(x)

∣∣∣∣∣ = 0.

Notes:

(a) The above statement corresponds to the so-called Weierstrass Approximation
Theorem. It states that every continuous function g on a closed interval can be
approximated uniformly over this interval by a polynomial.

(b) Start you derivation by letting Yn ∼ Bin(n, x). Define the random variable
Xn = g(x)− g

(
Yn
n

)
.

(c) Note that for every random variable V , E[V ] = E[V 1C ]+E[V 1Cc ] for an event
C. In the context of this problem, define V = Xn and C = {

∣∣Yn
n − x

∣∣ > δ}.
The goal is then to show that |E[Xn]| = O(ε) for a sufficiently large n. P (C)
can be bounded using known inequalities.

(d) Every continuous function g on a closed interval is bounded.

(e) g uniformly continuous on [0, 1]: ∀ε > 0,∃δ > 0 such that |g(x)− g(x̃)| < ε for
|x− x̃| < δ with x, x̃ ∈ [0, 1].
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