ECE534, Spring 2020: Problem Set #3 Due Mar 27, 2020

1. All Types of Convergence of Random Sequences

Consider a sequence of random variables X_1, X_2, \ldots with its generic term defined as follows:

$$X_1 \sim \text{Ber}(1/2) \text{ and } X_n = (X_{n-1} + 1) \mod 2$$

Does this sequence converge almost surely, in probability, in mean square and in distribution? Justify your answer for each type of convergence separately.

2. Convergence in Probability

Prove that $X_n \xrightarrow{p} X$ if and only if

$$\lim_{n \to \infty} E\left[\frac{|X_n - X|}{1 + |X_n - X|}\right] = 0.$$

3. Almost Sure Convergence [Extra Credit]

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $P(X_n > x) = e^{-x}, x \ge 0$. Show that

$$\frac{\max\{X_1, X_2, \dots, X_n\}}{\log n} \xrightarrow[n \to \infty]{\text{a.s.}} 1.$$

Note: Use the Borel-Cantelli Lemma.

4. Maximum of a Finite Set of sub-Gaussian Random Variables

A random variable $X \in \mathbb{R}$ is called *sub-Gaussian* with *variance proxy* σ^2 if E[X] = 0 and its moment generating function satisfies:

$$m_X(u) = E\left[e^{uX}\right] \le e^{\frac{u^2\sigma^2}{2}}, \quad \forall u \in \mathbb{R}.$$

We write $X \sim \text{subG}(\sigma^2)$.

(a) Use the Chernoff bound to show that

$$P(X > t) \le e^{-\frac{t^2}{2\sigma^2}}, \quad \forall t > 0$$

when $X \sim \text{subG}(\sigma^2)$.

(b) Let X_1, X_2, \ldots, X_n be subG(σ^2) random variables, not necessarily independent. Show that the expectation of the maximum can be bounded as

$$E[\max_{1 \le i \le n} X_i] \le \sigma \sqrt{2\log n}.$$

Hint: Start your derivation by noting that

$$E[\max_{1 \le i \le n} X_i] = \frac{1}{\lambda} E\left[\log\left(e^{\lambda \max_{1 \le i \le n} X_i}\right)\right], \quad \forall \lambda > 0.$$

(c) With the same assumptions as in the previous part, show that

$$P\left(\max_{1\leq i\leq n} X_i > t\right) \leq ne^{-\frac{t^2}{2\sigma^2}}, \quad \forall t > 0.$$

5. Dominated Convergence

Suppose that $|X_n| \leq Y, \forall n \geq 1$ and $E[Y] < \infty$. Show that if $X_n \xrightarrow[n \to \infty]{p} X$, then $E[|X_n - X|] \xrightarrow[n \to \infty]{} 0$ (convergence of X_n in mean to X or in the L^1 norm). Notes:

- (a) For a random variable Z the following holds: $E[|Z|] < \infty$ if and only if $\forall \epsilon > 0, \exists \delta > 0$ such that $E[|Z|\mathbb{1}_A] < \epsilon$ for all events A such that $P(A) < \delta$.
- (b) Define $V_n = |X_n X|$. Start you derivation using Note (b) in Problem 7 for $C = \{V_n \le \epsilon\}$, where $\epsilon > 0$ is fixed. Conclude your derivation using part (a) by allowing ϵ to decrease to zero.

6. Sequences of Random Variables and Convergence Sets

Let $(X_n)_{n\geq 1}$ be a sequence of random variables on (Ω, \mathcal{F}, P) . Consider the set $A = \{\omega \in \Omega : (X_n(\omega))_{n\geq 1} \text{ converges}\}$. Show that $A \in \mathcal{F}$ (i.e., A is an event) and that there exists a random variable $X : \Omega \to \mathbb{R}$, i.e., an \mathcal{F} -measurable mapping, such that $X_n(\omega) \to X(\omega), \forall \omega \in A$.

Hint: To show that $A \in \mathcal{F}$, try to express it in terms of countable unions and intersections. Based on this result, identify X.

7. Polynomial Approximation of Continuous Functions [Extra Credit]

Consider a continuous mapping $g: [0,1] \to \mathbb{R}$. Show that

$$\lim_{n \to \infty} \sup_{0 \le x \le 1} \left| \sum_{k=0}^n g\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} - g(x) \right| = 0.$$

Notes:

- (a) The above statement corresponds to the so-called Weierstrass Approximation Theorem. It states that every continuous function g on a closed interval can be approximated uniformly over this interval by a polynomial.
- (b) Start you derivation by letting $Y_n \sim Bin(n, x)$. Define the random variable $X_n = g(x) g\left(\frac{Y_n}{n}\right)$.
- (c) Note that for every random variable $V, E[V] = E[V\mathbb{1}_C] + E[V\mathbb{1}_{C^c}]$ for an event C. In the context of this problem, define $V = X_n$ and $C = \{|\frac{Y_n}{n} x| > \delta\}$. The goal is then to show that $|E[X_n]| = O(\epsilon)$ for a sufficiently large n. P(C) can be bounded using known inequalities.
- (d) Every continuous function g on a closed interval is *bounded*.
- (e) g uniformly continuous on [0,1]: $\forall \epsilon > 0, \exists \delta > 0$ such that $|g(x) g(\tilde{x})| < \epsilon$ for $|x \tilde{x}| < \delta$ with $x, \tilde{x} \in [0,1]$.