ECE534 Random Processes
 Spring 2020

University of Illinois at Urbana-Champaign
 Additional Probability Concepts

HW 2: Solution

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1

Since A, B are independent events

$$
P(A B)=P(A) P(B) \quad \text { or } \quad \frac{|A B|}{p}=\frac{|A|}{p} \frac{|B|}{p},
$$

i.e., $|A B| p=|A||B|$. Therefore, p is a divisor of $|A||B|$, assuming that $|A||B|>0$. Since p is prime, p is a divisor of at least one of $|A|$ and $|B|$ (this elementary fact is the so-called Euclid's Lemma in number theory) and because $p \geq \max \{|A|,|B|\}$ the conclusion follows.

Problem 2

By the hint, it is easy to see that $P\left(\mathbb{1}_{R}(e)=1\right)=\frac{1}{2}, \forall e \in E$. Therefore, $E\left[N_{R}\right]=\frac{|E|}{2}$. This implies that there exists at least one $R \subseteq V$ such that $N_{R} \geq \frac{|E|}{2}$.

Problem 3

By conditioning on the first toss we obtain

$$
p_{k r}=p p_{k-1, r}+(1-p) p_{k, r-1}
$$

Additionally, $p_{k 0}=0$ and $p_{0 r}=1$ for $k, r \geq 1$.

Problem 4

By the provided hint $P\left(Z_{i}=1\right)=P\left(R_{i}=1\right) P\left(Y_{i}=1\right)=\frac{p_{1}}{p_{2}} p_{2}=p_{1}, \forall i$. Therefore, the Z_{i} 's are i.i.d. and have the same distribution with the X_{i} 's. This implies that $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ and $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are identically distributed vectors. Moreover, by construction, $Z_{i} \leq Y_{i}, \forall i$. Therefore, $Z \leq Y$ and since f is increasing, $f(Z) \leq f(Y)$, for every realization of Z, Y. By taking expectations to both sides, we conclude that $E[f(Z)]=E[f(X)] \leq E[f(Y)]$.

Problem 5

For the first part, note that any real number x can be written as

$$
x=\int_{0}^{x} 1 d t=\int_{0}^{\infty} \mathbb{1}(x>t) d t .
$$

By replacing x with X and by taking the expectation to both sides the first identity follows. To exchange the order of expectation and integration we employ the Fubini-Tonelli theorem.

For the second part, we use the first part to write

$$
E\left[|Y|^{p}\right]=\int_{0}^{\infty} P\left(|Y|^{p}>\tilde{t}\right) d \tilde{t}=\int_{0}^{\infty} P(|Y|>\sqrt[p]{\tilde{t}}) d \tilde{t}
$$

By changing variables to $t=\sqrt[p]{\tilde{t}}$ and by noting that $p t^{p-1} d t=d \tilde{t}$ the second identity follows.

Problem 6

By conditioning on any of the variables, say on X_{n}, the recursion in the hint follows. Clearly, $Q_{0}(x)=1, \forall x \in(0,1]$. This shows that $Q_{1}(x)=x, Q_{2}(x)=\frac{x^{2}}{2!}, \ldots, Q_{n}(x)=\frac{x^{n}}{n!}$ (can be verified inductively). By employing the note in the previous problem, $E[N]=\sum_{n=0}^{\infty} P(N>n)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}$.

Problem 7

(a)

$$
\begin{aligned}
E\left[e^{\lambda x}\right] & =\frac{1}{2}\left[e^{\lambda}+e^{-\lambda}\right]=\frac{1}{2}\left[\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}+\sum_{k=0}^{\infty} \frac{(-\lambda)^{k}}{k!}\right]=\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k)!} \\
& \leq 1+\sum_{k=1}^{\infty} \frac{\lambda^{2 k}}{2^{k} k!}=1+\sum_{k=1}^{\infty} \frac{\left(\lambda^{2} / 2\right)^{k}}{k!}=e^{\frac{\lambda^{2}}{2}}
\end{aligned}
$$

where we have used the observation that $(2 k)!=k!(k+1) \cdots(2 k) \geq k!2^{k}, \forall k \geq 1$.
(b) i.

$$
E_{X}\left[e^{\lambda X}\right]=E_{X}\left[e^{\lambda\left(X-E_{X^{\prime}}\left[X^{\prime}\right]\right)}\right] \leq E_{X, X^{\prime}}\left[e^{\lambda\left(X-X^{\prime}\right)}\right]
$$

where $E\left[X^{\prime}\right]=0$ and Jensen's inequality have been used.
ii.

$$
\begin{aligned}
E_{X, X^{\prime}}\left[e^{\lambda\left(X-X^{\prime}\right)}\right] & =E_{X, X^{\prime}, \varepsilon}\left[e^{\lambda \varepsilon\left(X-X^{\prime}\right)}\right]=E_{X, X^{\prime}}\left[E_{\varepsilon}\left[e^{\lambda \varepsilon\left(X-X^{\prime}\right)}\right]\right] \\
& \leq E_{X, X^{\prime}}\left[e^{\frac{\lambda^{2}\left(X-X^{\prime}\right)^{2}}{2}}\right]
\end{aligned}
$$

Since $X \in[a, b]$, we have that $\left|X-X^{\prime}\right| \leq(b-a)$ and therefore, $E_{X, X^{\prime}}\left[e^{\frac{\lambda^{2}\left(X-X^{\prime}\right)^{2}}{2}}\right] \leq E_{X, X^{\prime}}\left[e^{\frac{\lambda^{2}(b-a)^{2}}{2}}\right]=$ $e^{\frac{\lambda^{2}(b-a)^{2}}{2}}$. Hence, $E\left[e^{\lambda X}\right] \leq e^{\frac{\lambda^{2}(b-a)^{2}}{2}}$.
This bound has been sharpened in class via Hoeffding's Lemma.

Problem 8

$$
\begin{aligned}
E[M] & =\frac{1}{n} \sum_{i=1}^{n} E\left[\frac{g\left(Y_{i}\right) f_{X}\left(Y_{i}\right)}{f_{Y}\left(Y_{i}\right)}\right]=\frac{1}{n} n E\left[\frac{g(Y) f_{X}(Y)}{f_{Y}(Y)}\right] \\
& =\int \frac{g(y) f_{X}(y)}{f_{Y}(y)} f_{Y}(y) d y=\int g(x) f_{X}(x) d x
\end{aligned}
$$

where the last part is due to the equivalence of f_{X}, f_{Y}.
For the variance,

$$
\begin{aligned}
\operatorname{Var}(M) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} \frac{g\left(Y_{i}\right) f_{X}\left(Y_{i}\right)}{f_{Y}\left(Y_{i}\right)}\right)=\frac{1}{n^{2}} n \operatorname{Var}\left(\frac{g(Y) f_{X}(Y)}{f_{Y}(Y)}\right) \\
& =\frac{1}{n}\left(E\left[\frac{g^{2}(Y) f_{X}^{2}(Y)}{f_{Y}^{2}(Y)}\right]-(E[g(X)])^{2}\right)
\end{aligned}
$$

Here, we have used the fact that $\frac{g\left(Y_{i}\right) f_{X}\left(Y_{i}\right)}{f_{Y}\left(Y_{i}\right)}, i=1,2, \ldots, n$ are i.i.d. random variables and the result for $E[M]$.

