ECE534, Spring 2020: Problem Set \#2

Due Feb 26, 2020

1. Independence of Events and Number Theory

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space such that Ω is finite with cardinality $|\Omega|=p$ where p is a prime number, $\mathcal{F}=2^{\Omega}$ is the power set of Ω and $\mathbb{P}(A)=|A| /|\Omega|=|A| / p$ is the probability of any event $A \in \mathcal{F}$. Let A, B be independent events. Prove that at least one of these two events is either \emptyset or Ω.
2. Graphs and Random Sampling

Let $G=(V, E)$ be a graph with node set V and edge set E, both finite. For an arbitrary set $R \subseteq V$ and $e \in E$ define the indicator variable

$$
\mathbb{1}_{R}(e)=\left\{\begin{array}{lc}
1, & \text { if } e \text { connects } R \text { and } R^{c}, \\
0, & \text { otherwise }
\end{array} .\right.
$$

Let $N_{R}=\sum_{e \in E} \mathbb{1}_{R}(e)$ be the number of edges connecting $R, R^{c}\left(\left(R, R^{c}\right)\right.$ is a cut of G and N_{R} corresponds to the cardinality of the associated cut-set). Show that $\exists R \subseteq V$ such that $N_{R} \geq|E| / 2$.
Hint: Assign to each $v \in V$ a Bernoulli random variable with probability of success $1 / 2$. Randomly sample V by placing in R all v 's with Bernoulli values 1 . Compute $E N_{R}$ and establish from this computation the desired conclusion. This line of reasoning is an instance of the so-called probabilistic method.

3. Probability Recursions

Consider a coin with $P(H)=p$. The coin is tossed repeatedly. Player A wins if k heads appear before r tails. Otherwise player B wins. Let $P(A$ wins $)=p_{k r}$. Find a recursion for $p_{k r}$ and the associated boundary conditions, i.e., the values for $p_{k 0}, p_{0 r}$.
4. A precursor inequality on finite distributive lattices

Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be an increasing function, i.e., $f(x) \leq f(y)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \leq$ $y=\left(y_{1}, \ldots, y_{n}\right)$, where \leq for vectors denotes elementwise ordering (i.e., $x_{i} \leq$ $\left.y_{i}, i=1,2, \ldots, n\right)$. Let $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right), Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ be vectors of i.i.d. $\operatorname{Ber}\left(p_{1}\right)$ and $\operatorname{Ber}\left(p_{2}\right)$ random variables, respectively. More explicitly, $X_{i} \sim$ $\operatorname{Ber}\left(p_{1}\right), i=1,2, \ldots, n$ and $Y_{i} \sim \operatorname{Ber}\left(p_{2}\right), i=1,2, \ldots, n$. Suppose that $p_{1} \leq p_{2}$. Show that $E[f(X)] \leq E[f(Y)]$.
Hint: Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be a vector of i.i.d. $\operatorname{Ber}\left(p_{1} / p_{2}\right)$ random variables, independent of everything else. Define $Z_{i}=R_{i} Y_{i}, i=1, \ldots, n$ and note that the Z_{i} 's are i.i.d. Bernoulli random variables which are identically distributed with the X_{i} 's.
5. Classical Identities [Extra Credit]

Let X be a nonnegative random variable. Show that

$$
E[X]=\int_{0}^{\infty} P(X>t) d t .
$$

Extend this inequality to show that for any $p \in(0, \infty)$ and any random variable Y

$$
E\left[|Y|^{p}\right]=\int_{0}^{\infty} p t^{p-1} P(|Y|>t) d t
$$

whenever the right-hand side is finite.
Note: For a nonnegative integer-valued random variable T such that $E[T]<\infty$, the corresponding identity is $E[T]=\sum_{n=1}^{\infty} P(T \geq n)=\sum_{n=0}^{\infty} P(T>n)$.

6. Integral Recursions

Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables uniformly distributed over $[0,1]$. For $x \in(0,1)$ define the random variable

$$
N=\min \left\{n \geq 1: X_{1}+X_{2}+\cdots+X_{n}>x\right\} .
$$

Let $Q_{n}(x)=P(N>n)$. Prove that $Q_{n}(x)=x^{n} / n$! and use the note in Problem 5 to compute $E[N]$.
Hint: Argue that $Q_{n}(x)$ satisfies the recursion $Q_{n}(x)=\int_{0}^{x} Q_{n-1}(x-u) d u$. Initialize the recursion appropriately (i.e., choose the value of $Q_{0}(x)$ for any $\left.x \in(0,1]\right)$ and solve the recursion to obtain $Q_{n}(x)$.

7. Rademacher Random Variables and Symmetrization

(a) Let X be a Rademacher random variable, i.e., $P(X= \pm 1)=1 / 2$. Show that

$$
E\left[e^{\lambda X}\right] \leq e^{\lambda^{2} / 2}
$$

(b) Let X be a zero mean random variable supported on the interval $[a, b]$.
i. Assume that X^{\prime} is an independent copy of X, i.e., X, X^{\prime} are i.i.d. random variables. Using Jensen's inequality, show that

$$
E\left[e^{\lambda X}\right] \leq E_{X, X^{\prime}}\left[e^{\lambda\left(X-X^{\prime}\right)}\right],
$$

where $E_{X, X^{\prime}}[\cdot]$ denotes expectation with respect to the joint distribution of X, X^{\prime}.
ii. Assume that ε is a Rademacher random variable, independent of X, X^{\prime}. Observe that the random variables $X-X^{\prime}$ and $\varepsilon\left(X-X^{\prime}\right)$ have the same distribution, which is symmetric. Use the tower property of conditional expectation and the inequality in the previous part to show that

$$
E\left[e^{\lambda X}\right] \leq e^{\lambda^{2}(b-a)^{2} / 2}
$$

8. Basics of Importance Sampling

Let $Z=g(X)$. Suppose that we want to estimate the mean value of Z, which is given by $E[Z]=\int g(x) f_{X}(x) d x$. Assume that it is difficult to draw samples from f_{X} or that $g(X)$ has a very large variance. Let f_{Y} be an equivalent density to f_{X} for all x, i.e., $f_{Y}(x)=0$ if and only if $f_{X}(x)=0$. Let $\left\{Y_{i}\right\}_{i=1}^{n}$ be i.i.d. random variables with density f_{Y}. Define $M=\frac{1}{n} \sum_{i=1}^{n} \frac{g\left(Y_{i}\right) f_{X}\left(Y_{i}\right)}{f_{Y}\left(Y_{i}\right)}$. Prove that $E[M]=E[g(X)]=E\left[\frac{g(Y) f_{X}(Y)}{f_{Y}(Y)}\right]$ and $\operatorname{Var}(M)=\frac{1}{n}\left(E\left[\frac{g^{2}(Y) f_{X}^{2}(Y)}{f_{Y}^{2}(Y)}\right]-(E[g(X)])^{2}\right)$.
Note: f_{Y} is called importance density. The underlying key idea is that we can easily sample from f_{Y}. Moreover, f_{Y} is usually chosen so that $\operatorname{Var}(M)$ is smaller than $\frac{1}{n}\left(E\left[g^{2}(X)\right]-(E[g(X)])^{2}\right)$, which is the variance of $\tilde{M}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)$.

