ECE534 Random Processes
 Spring 2020

University of Illinois at Urbana-Champaign Basic Probability Concepts

HW 1: Solution

Instructor: Dimitrios Katselis
TAs: Leda Sari, Amish Goel

Problem 1

For this problem,

$$
\Omega=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}
$$

and $A=\{H H H, H H T, H T H, H T T\}, B=\{H H H, H H T, T H H, T H T\}, C=\{H H T, T H H\}$. Clearly,

$$
P(A)=P(B)=\frac{1}{2}
$$

and

$$
P(C)=\frac{1}{4}
$$

Furthermore,

$$
\begin{aligned}
& P(A B)=P(\{H H H, H H T\})=\frac{1}{4}=P(A) P(B) \\
& P(A C)=P(\{H H T\})=\frac{1}{8}=P(A) P(C) \\
& P(B C)=P(\{H H T, T H H\})=\frac{1}{4} \neq P(B) P(C)
\end{aligned}
$$

Hence, A, B, C are not independent.

Problem 2

By the event axioms
(a) $A \cap B=\left(A^{c} \cup B^{c}\right)^{c}$, therefore $A \cap B \in \mathcal{F}$.
(b) $A \backslash B=A \cap B^{c}$ and by the previous part, $A \backslash B \in \mathcal{F}$.
(c) $A \triangle B=(A \backslash B) \cup(B \backslash A) \in \mathcal{F}$ by the previous part.

Problem 3

The proof is by induction. For $n=2$, the principle holds due to $P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} A_{2}\right)$. Suppose that the result holds for any $n \leq r$. For $n=r+1$, we have that $P\left(\bigcup_{i=1}^{r+1} A_{i}\right)=P\left(\bigcup_{i=1}^{r} A_{i}\right)+P\left(A_{r+1}\right)-$ $P\left(\left(\bigcup_{i=1}^{r} A_{i}\right) \cap A_{r+1}\right)=P\left(\bigcup_{i=1}^{r} A_{i}\right)+P\left(A_{r+1}\right)-P\left(\bigcup_{i=1}^{r}\left(A_{i} \cap A_{r+1}\right)\right)$ and the result follows easily by invoking the induction hypothesis.

Problem 4

We have

$$
\begin{aligned}
P\left(\bigcap_{n=1}^{\infty} A_{n}\right) & =\lim _{k \rightarrow \infty} P\left(\bigcap_{n=1}^{k} A_{n}\right)=\lim _{k \rightarrow \infty} P\left(\left(\bigcup_{n=1}^{k} A_{n}^{c}\right)^{c}\right) \\
& =\lim _{k \rightarrow \infty}\left[1-P\left(\bigcup_{n=1}^{k} A_{n}^{c}\right)\right] \geq \lim _{k \rightarrow \infty}\left[1-\sum_{n=1}^{k} P\left(A_{n}^{c}\right)\right]=1
\end{aligned}
$$

Problem 5

Let $Z=X+Y$. By relying on the independence of X, Y we have

$$
\begin{aligned}
P(Z=n) & =P(X+Y=n)=\sum_{j=0}^{n} p_{X Y}(X=j, Y=n-j) \\
& =\sum_{j=0}^{n} p_{X}(X=j) p_{Y}(Y=n-j) \\
& =\sum_{j=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}^{j}}{j!} e^{-\lambda_{2}} \frac{\lambda_{2}^{n-j}}{(n-j)!} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!} \sum_{j=0}^{n} \frac{n!}{j!(n-j)!} \lambda_{1}^{j} \lambda_{2}^{n-j} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{n!}\left(\lambda_{1}+\lambda_{2}\right)^{n} .
\end{aligned}
$$

Therefore, $Z \sim \operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)$.

Problem 6

1. By solving $1=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X Y}(x, y) d x d y=\int_{0}^{1} \int_{0}^{1-x} c x y d y d x$ for c, we obtain $c=24$.
2. $f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y=\int_{0}^{1-x} 24 x y d y=12 x(1-x)^{2}$ for $0 \leq x \leq 1$ and 0 otherwise.
3. $P(X+Y<1 / 2)=\int_{0}^{1 / 2} \int_{0}^{1 / 2-x} 24 x y d y d x=\frac{1}{16}$.
4. The support of $f_{X Y}$ is not a product set, hence X, Y are not independent.

Problem 7

For $k \leq n$,

$$
E\left[\frac{\sum_{i=1}^{k} X_{i}}{\sum_{j=1}^{n} X_{j}}\right]=\sum_{i=1}^{k} E\left[\frac{X_{i}}{\sum_{j=1}^{n} X_{j}}\right]=k E\left[\frac{X_{1}}{\sum_{j=1}^{n} X_{j}}\right]
$$

where in the last step we employ the observation that

$$
\frac{X_{1}}{\sum_{j=1}^{n} X_{j}}, \frac{X_{2}}{\sum_{j=1}^{n} X_{j}}, \ldots, \frac{X_{k}}{\sum_{j=1}^{n} X_{j}}
$$

are identically distributed random variables due to the i.i.d. assumption on $X_{1}, X_{2}, \ldots, X_{n}$ and therefore, they have the same mean value. Moreover, for $k=n$,

$$
1=E\left[\frac{\sum_{i=1}^{n} X_{i}}{\sum_{j=1}^{n} X_{j}}\right]=n E\left[\frac{X_{1}}{\sum_{j=1}^{n} X_{j}}\right]
$$

Hence,

$$
E\left[\frac{\sum_{i=1}^{k} X_{i}}{\sum_{j=1}^{n} X_{j}}\right]=\frac{k}{n}, 1 \leq k \leq n
$$

Problem 8

By relying on the total law of probability we can write

$$
\begin{aligned}
P(Y>X) & =\sum_{j=0}^{\infty} P(Y>X \mid X=j) p_{j} \\
& =\sum_{j=0}^{\infty} P(Y>j \mid X=j) p_{j} \\
& \left.=\sum_{j=0}^{\infty} P(Y>j) p_{j} \quad \text { (independence of } X, Y\right) \\
& \left.=\sum_{j=0}^{\infty}(1-p)^{j} p_{j} \quad \text { (tail property of } \operatorname{Geo}(p)\right) \\
& =\sum_{j=0}^{\infty} z^{j} p_{j}=G(z) .
\end{aligned}
$$

Problem 9

It is easy to see that

$$
a^{r} \mathbb{1}(|Y| \geq a)+\left(b^{r}-a^{r}\right) \mathbb{1}(|Y| \geq b) \leq|Y|^{r}
$$

By taking the expectations to both sides the result follows.

Problem 10

1. The order statistics $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ will take the values $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ if and only if there exists a permutation $\{\pi(1), \pi(2), \ldots \pi(n)\}$ of $\{1,2, \ldots, n\}$ such that $X_{1}=x_{\pi(1)}, X_{2}=x_{\pi(2)}, \ldots, X_{n}=$ $x_{\pi(n)}$. For any permutation π we have

$$
\begin{aligned}
& P\left(x_{\pi(1)}-\frac{\Delta x}{2}<X_{1}<x_{\pi(1)}+\frac{\Delta x}{2}, \ldots, x_{\pi(n)}-\frac{\Delta x}{2}<X_{n}<x_{\pi(n)}+\frac{\Delta x}{2}\right) \\
& \approx(\Delta x)^{n} f_{X_{1}, \ldots, X_{n}}\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=(\Delta x)^{n} \prod_{i=1}^{n} f\left(x_{i}\right)
\end{aligned}
$$

Therefore, for any $x_{1}<x_{2}<\cdots<x_{n}$,

$$
\begin{aligned}
& P\left(x_{1}-\frac{\Delta x}{2}<X_{(1)}<x_{1}+\frac{\Delta x}{2}, \ldots, x_{n}-\frac{\Delta x}{2}<X_{(n)}<x_{n}+\frac{\Delta x}{2}\right) \\
& \approx n!(\Delta x)^{n} \prod_{i=1}^{n} f\left(x_{i}\right)
\end{aligned}
$$

Dividing by $(\Delta x)^{n}$ and letting $\Delta x \rightarrow 0$ yields the result.
2. The probability to be computed can be equivalently expressed in terms of the order statistics $X_{(1)} \leq X_{(2)} \leq$ $X_{(3)}$ of the point positions as $P\left(X_{(3)} \geq X_{(2)}+d, X_{(2)} \geq X_{(1)}+d\right)$. By employing part (a)

$$
\begin{aligned}
P\left(X_{(3)} \geq X_{(2)}+d, X_{(2)} \geq X_{(1)}+d\right) & =\int_{0}^{1-2 d} \int_{x_{1}+d}^{1-d} \int_{x_{2}+d}^{1} 3!d x_{3} d x_{2} d x_{1} \\
& =(1-2 d)^{3}
\end{aligned}
$$

