1. Rademacher Random Variables and Symmetrization

(a) Let X be a Rademacher random variable, i.e., $P(X = \pm 1) = 1/2$. Show that

$$E[e^{\lambda X}] \leq e^{\lambda^2/2}.$$

Solution

$$E[e^{\lambda X}] = \frac{1}{2} [e^\lambda + e^{-\lambda}] = \frac{1}{2} \left[\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} + \sum_{k=0}^{\infty} \frac{(-\lambda)^k}{k!} \right] = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!} \leq 1 + \sum_{k=1}^{\infty} \frac{\lambda^{2k}}{2^k k!} = 1 + \sum_{k=1}^{\infty} \frac{(\lambda^2/2)^k}{k!} = e^{\lambda^2/2}.$$

(b) Let X be a zero mean random variable supported on the interval $[a, b]$.

i. Assume that X' is an independent copy of X, i.e., X, X' are i.i.d. random variables. Using Jensen’s inequality, show that

$$E[e^{\lambda X}] \leq E_{X,X'}[e^{\lambda (X - X')}],$$

where $E_{X,X'}[\cdot]$ denotes expectation with respect to the joint distribution of X, X'.

ii. Assume that ϵ is a Rademacher random variable, independent of X, X'. Observe that the random variables $X - X'$ and $\epsilon (X - X')$ have the same distribution, which is symmetric. Use the tower property of conditional expectation and the inequality in 1a to show that

$$E[e^{\lambda X}] \leq e^{\lambda^2(b-a)^2/2}.$$

Solution

(i)

$$E_X[e^{\lambda X}] = E_X[e^{\lambda (X - E_{X'}[X'])}] \leq E_{X,X'}[e^{\lambda (X - X')}],$$

where $E[X'] = 0$ and Jensen’s inequality have been used.

(ii)

$$E_{X,X'}[e^{\lambda (X - X')}] = E_{X,X',\epsilon}[e^{\lambda \epsilon (X - X')}] = E_{X,X'}[E_{\epsilon}[e^{\lambda \epsilon (X - X')}]] \leq E_{X,X'}[e^{\lambda^2 (X - X')^2/2}].$$
Since \(X \in [a, b] \), we have that \(|X - X'| \leq (b-a) \) and therefore, \(E_{X,X'} \left[e^{\frac{X^2 - X'^2}{2}} \right] \leq E_{X,X'} \left[e^{\frac{(b-a)^2}{2}} \right] = e^{\frac{(b-a)^2}{2}}. \) Hence,

\[
E \left[e^{\lambda X} \right] \leq e^{\frac{\lambda^2(b-a)^2}{2}}.
\]

2. Concentration of \(\chi^2 \)- Random Variables and Random Projections

A chi-squared random variable \(S \) with \(n \) degrees of freedom is a random variable of the form:

\[
S = \sum_{i=1}^{n} Z_i^2, \quad Z_i \sim \mathcal{N}(0, 1), \quad i = 1, 2, \ldots, n \quad \text{independent}
\]

and is denoted by \(S \sim \chi^2_n \). For this random variable, \(E[S] = n \), i.e., the mean value coincides with the degrees of freedom. Moreover, the following inequality holds:

\[
P \left(\left| \frac{1}{n} \sum_{i=1}^{n} Z_i^2 - 1 \right| > t \right) \leq 2e^{-nt^2/8}, \quad \forall t \in (0, 1).
\]

This is a concentration inequality for chi-squared random variables, because it demonstrates that as the number of degrees of freedom increases, the random variable \(S/n \) cannot be very far away from its mean value 1. This inequality plays an important role in analyzing random projections.

Suppose that we are given \(m \) data points \(\{x_1, x_2, \ldots, x_m\} \) in \(\mathbb{R}^d \). If \(d \) is large, it may be too expensive to store these vectors. This motivates the introduction of a mapping \(F : \mathbb{R}^d \rightarrow \mathbb{R}^n \), which preserves the “essential” information in the data points and allows for the storage of the projected vectors \(\{F(x_1), \ldots, F(x_m)\} \) instead of the initial set of vectors. Preserving the essential information of the data points corresponds, e.g., to the requirement that \(F \) satisfies

\[
(1-\delta) \|x_i - x_j\|_2^2 \leq \|F(x_i) - F(x_j)\|_2^2 \leq (1+\delta) \|x_i - x_j\|_2^2, \quad \forall i, j \in \{1, 2, \ldots, m\}
\]

for some \(\delta \in (0, 1) \). Here, \(\| \cdot \|_2 \) corresponds to the Euclidean norm either in \(\mathbb{R}^d \) or in \(\mathbb{R}^n \). Such a requirement can always be achieved if \(n \) is large enough, but the goal is to guarantee these inequalities for a “small” \(n \) relative to \(d \).

Define \(F : x \rightarrow Zx/\sqrt{n} \), where \(Z \in \mathbb{R}^{n \times d} \) is a matrix containing i.i.d. \(\mathcal{N}(0, 1) \) random variables. Verify that such an \(F \) satisfies (2) with high probability by proving the following steps:

(a) Let \(Z_i \in \mathbb{R}^d \) denote the \(i \)th row of \(Z \). Argue that \(\tilde{Z}_i = Z_i x/\|x\|_2 \) is a \(\mathcal{N}(0, 1) \) random variable.
Solution

For a fixed $x \neq 0$, we have that $\tilde{Z}_i = \sum_{j=1}^{d} Z_{ij} x_j / \|x\|_2$ ($Z = [Z_{ij}]$ for the matrix Z). Therefore, \tilde{Z}_i is a linear combination of i.i.d. $\mathcal{N}(0,1)$ random variables and thus, \tilde{Z}_i is also normal. Moreover, denoting the coefficients of this linear transformation as $a_i = \frac{x_i}{\|x\|_2}$, we observe that

$$E[\tilde{Z}_i] = \sum_{j=1}^{d} E[Z_{ij}] \frac{x_j}{\|x\|_2} = 0,$$

$$\text{Var}(\tilde{Z}_i) = \sum_{j=1}^{d} \text{Var}(Z_{ij}) \frac{x_j^2}{\|x\|_2^2} = \sum_{j=1}^{d} \frac{x_j^2}{\|x\|_2^2} = 1,$$

where in $\text{Var}(\tilde{Z}_i)$ the independence of Z_{ij} has been used. Thus, $\tilde{Z}_i \sim \mathcal{N}(0,1)$.

(b) Conclude that $S = \sum_{i=1}^{n} \tilde{Z}_i^2$ is a chi-squared random variable with n degrees of freedom.

Solution

$S = \sum_{i=1}^{n} \tilde{Z}_i^2$ is clearly a chi-squared random variable by the preliminary definitions in this problem. We only need to verify that $\tilde{Z}_1, \ldots, \tilde{Z}_n$ are independent. This is straightforward due to the fact that in each \tilde{Z}_i, a different set of Z_{ij} participates.

(c) Use (1) to show that

$$P\left(\frac{\|F(x)\|_2^2}{\|x\|_2^2} \notin [(1 - \delta), (1 + \delta)] \right) \leq 2e^{-n\delta^2/n}, \text{ for any } 0 \neq x \in \mathbb{R}^d.$$
(d) Use the union bound to conclude that all the inequalities in (2) are satisfied with probability at least $1 - \epsilon$ for any $\epsilon \in (0, 1)$ if $n > \frac{16}{\delta^2} \log(m) + \frac{8}{\delta^2} \log \left(\frac{1}{\epsilon} \right)$.

Solution

Note that there are at most $\binom{m}{2}$ different pairs of data points (x_i, x_j). Thus, by the union bound

$$P \left(\frac{\|F(x_i - x_j)\|^2}{\|x_i - x_j\|^2} \notin [(1 - \delta), (1 + \delta)] \right) \leq 2 \binom{m}{2} e^{-\frac{n\delta^2}{8}}.$$

Requiring

$$2 \binom{m}{2} e^{-\frac{n\delta^2}{8}} \leq m^2 e^{-\frac{n\delta^2}{8}} \leq \epsilon$$

yields that $n > \frac{16}{\delta^2} \log(m) + \frac{8}{\delta^2} \log \left(\frac{1}{\epsilon} \right)$. I.e., $n > \frac{16}{\delta^2} \log(m) + \frac{8}{\delta^2} \log \left(\frac{1}{\epsilon} \right)$ is sufficient for all the inequalities given by (2) to hold with probability at least $1 - \epsilon$.

3. Convergence in Probability

(a) Let X_1, X_2, \ldots be a sequence of random variables such that $E[X_n] \to \mu$ and $\text{Var}(X_n) \to 0$ as $n \to \infty$. Show that $X_n \to \mu$ as $n \to \infty$ in probability.

Solution

Consider the deterministic sequence $\{a_n = E[X_n]\}$. Then, for any $\epsilon > 0$, there exists $N_\epsilon > 0$ such that $|a_n - \mu| = |E[X_n] - \mu| < \frac{\epsilon}{2}, \forall n > N_\epsilon$. Therefore, $\forall n > N_\epsilon$:

$$P(|X_n - \mu| > \epsilon) = P(|X_n - E[X_n] + E[X_n] - \mu| > \epsilon)$$

$$\leq P(|X_n - E[X_n]| + |E[X_n] - \mu| > \epsilon)$$

$$= P \left(|X_n - E[X_n]| > \frac{\epsilon}{2} \right) \leq \frac{\text{Var}(X_n)}{(\epsilon^2/4)} \to 0 \text{ as } n \to \infty.$$

Here, we use Chebyshev’s inequality in the last step. Hence, $\forall \epsilon > 0$, we have $\lim_{n \to \infty} P(|X_n - \mu| > \epsilon) = 0$, i.e., $X_n \overset{p}{\to} \mu$.

(b) Suppose that we distribute n balls into n boxes independently at random. Let $E_n = \mathbb{I}_1 + \mathbb{I}_2 + \cdots + \mathbb{I}_n$ be the number of empty boxes, where \mathbb{I}_j is the emptiness indicator of the jth box. Using part 3a show that $\frac{1}{n} E_n \overset{p}{\to} 1/e$ as $n \to \infty$.

Solution

Note that $\mathbb{I}_j \sim \text{Ber} \left((1 - \frac{1}{n})^n \right)$ random variables, because the probability of not occupying the jth box in every drop is $\left(1 - \frac{1}{n} \right)$. This leads to $E[\mathbb{I}_j] = (1 - \frac{1}{n})^n$.
and \(E[E_n] = n \left(1 - \frac{1}{n} \right)^n \). Moreover,

\[
E \left[E_n^2 \right] = \sum_{j=1}^{n} E \left[I_j^2 \right] + \sum_{i \neq j} E \left[I_i I_j \right] \\
= \sum_{j=1}^{n} E \left[I_j \right] + \sum_{i \neq j} E[I_i I_j] \\
= n \left(1 - \frac{1}{n} \right)^n + \sum_{i \neq j} E[I_i I_j].
\]

We now observe that \(E[I_i I_j] = P(\text{boxes } i \text{ and } j \text{ are both empty}) = \left(1 - \frac{2}{n} \right)^n \).

Combining, we see that

\[
\text{Var}(E_n) = E \left[E_n^2 \right] - \left(E[E_n] \right)^2 \\
= n \left(1 - \frac{1}{n} \right)^n + n(n-1) \left(1 - \frac{2}{n} \right)^n - n^2 \left(1 - \frac{1}{n} \right)^{2n}.
\]

Define the random variable \(S_n = \frac{E_n}{n} \). It is easy to see that \(E[S_n] = \frac{E[E_n]}{n} \to \frac{1}{e} \) as \(n \to \infty \), while

\[
\text{Var}(S_n) = \frac{1}{n} \left(1 - \frac{1}{n} \right)^n + \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right)^n - \left(1 - \frac{1}{n} \right)^{2n} \quad \to_{n \to \infty} 0 + e^{-2} - e^{-2} = 0.
\]

Therefore, by the previous part, \(S_n = \frac{E_n}{n} \overset{P}{\to} \frac{1}{e} \).

4. All Types of Convergence of Random Sequences

Consider a sequence of random variables \(X_1, X_2, \ldots \) with its generic term defined as follows:

\[
X_1 \sim \text{Ber}(1/2) \quad \text{and} \quad X_n = (X_{n-1} + 1) \mod 2.
\]

Does this sequence converge almost surely, in probability, in mean square and in distribution? Justify your answer for each type of convergence separately.

Solution

The sequence has only two outcomes (or sample paths) depending on \(X_1 \):

\[
X_1 = 1 : \text{Then } X_1 X_2 \ldots = 10101010 \ldots \\
X_1 = 0 : \text{Then } X_1 X_2 \ldots = 01010101 \ldots
\]

(a) \(\{X_n\} \) does not converge almost surely because the probability of every jump is \(\frac{1}{2} \).

(b) \(\{X_n\} \) does not converge in probability because the frequency of jumps is equal to \(\frac{1}{2} \).
(c) \(\{X_n\} \) does not converge to \(\frac{1}{2} \) (mean value of \(X_n \) for all \(n \)) in mean square sense since
\[
\lim_{n \to \infty} E \left[\left(X_n - \frac{1}{2} \right)^2 \right] = E \left[X_n^2 - X_n + \frac{1}{4} \right] = E[X_n^2] - E[X_n] + \frac{1}{4} = \frac{1}{2}
\]

(d) As \(n \to \infty \), the value of the \(X_n \) is determined by \(X_1 \) and therefore, \(X_n \sim \text{Ber} \left(\frac{1}{2} \right) \), \(\forall n \geq 1 \) (due to \(X_1 \)), hence \(X_n \overset{d}{\to} \text{Ber} \left(\frac{1}{2} \right) \).

5. Entropy Bounds

For a positive random variable \(X \), the following definition of entropy is introduced:
\[
H(X) = E[X \log X] - E[X] \log E[X].
\]
Consider the random variable \(e^{\lambda X} \) and the moment generating function \(m_X(\lambda) = E \left[e^{\lambda X} \right] \). It is then easy to see that
\[
H \left(e^{\lambda X} \right) = \lambda m_X'(\lambda) - m_X(\lambda) \log m_X(\lambda).
\]
Assume that there is a constant \(\sigma^2 < \infty \) such that
\[
H \left(e^{\lambda X} \right) \leq \frac{\lambda^2 \sigma^2}{2} m_X(\lambda), \quad \forall \lambda \in \mathbb{R}_+.
\]
Show that
\[
E \left[e^{\lambda(X - E[X])} \right] \leq e^{\frac{\lambda^2 \sigma^2}{2}}, \quad \forall \lambda \in \mathbb{R}_+.
\]

Solution

We need to show that \(\log m_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2} \). Note that \(H \left(e^{\lambda X} \right) \leq \frac{\lambda^2 \sigma^2}{2} m_X(\lambda) \) is equivalent to \(\lambda m_X'(\lambda) - m_X(\lambda) \log m_X(\lambda) \leq \frac{\lambda^2 \sigma^2}{2} m_X(\lambda) \) or \(\frac{m_X'(\lambda)}{\lambda m_X(\lambda)} - \frac{1}{\lambda^2} \log m_X(\lambda) \leq \frac{\sigma^2}{2} \), where we have divided by \(\lambda^2 m_X(\lambda) \). We now see that
\[
\frac{d}{d\lambda} \log m_X(\lambda) = \frac{m_X'(\lambda)}{\lambda m_X(\lambda)} - \frac{m_X(\lambda)}{\lambda^2}.
\]
Also,
\[
\lim_{\lambda \to 0} \frac{\log m_X(\lambda)}{\lambda} = \frac{m_X'(0)}{m_X(0)} = E[X].
\]
Therefore, for an arbitrary \(\lambda > 0 \),
\[
\int_0^\lambda \left[\frac{d}{d\lambda} \log m_X(\lambda) \right] d\lambda = \frac{\log m_X(\lambda)}{\lambda} - E[X] \leq \int_0^\lambda \frac{\sigma^2}{2} d\lambda = \frac{\sigma^2 \lambda}{2}.
\]
Multiplying both sides by λ, we obtain
\[
\log E \left[e^{\lambda(X-E[X])} \right] = \log E \left[e^{\lambda X} \right] = \log E \left[e^{\lambda X} \right] - \lambda E[X] \leq \frac{\sigma^2 \lambda^2}{2}.
\]

6. **Rademacher Complexity**

Let X_1, X_2, \ldots, X_n be independent random variables such that $X_i \in [a, b]$ for all $i \in \{1, 2, \ldots, n\}$. Consider a function $f : \mathbb{R}^n \to \mathbb{R}$, which is convex in each of its arguments and L-Lipschitz with respect to the Euclidean norm $\| \cdot \|_2$. Then the following inequality holds:
\[
E \left[e^{\lambda(f(X_1, X_2, \ldots, X_n) - E[f(X_1, X_2, \ldots, X_n)])} \right] \leq e^{\lambda^2 L^2 (b-a)^2}, \ \forall \lambda \geq 0. \tag{3}
\]

Consider a set of vectors $\mathcal{C} \subset \mathbb{R}^n$. Then,
\[
\mathcal{R}(\mathcal{C}) = E \left[\sup_{c \in \mathcal{C}} \sum_{i=1}^{n} \varepsilon_i c_i \right]
\]
corresponds to the **Rademacher complexity** of \mathcal{C}. Here, $\{\varepsilon_i\}$ are independent Rademacher random variables as these were defined in Problem 1 and $c = [c_1, c_2, \ldots, c_n]$ is a vector in \mathcal{C}. Let $\hat{R}(\mathcal{C}) = \sup_{c \in \mathcal{C}} \sum_{i=1}^{n} \varepsilon_i c_i$ denote the **empirical** version of $\mathcal{R}(\mathcal{C})$. Using (3), argue that
\[
P(\hat{R}(\mathcal{C}) \geq R(\mathcal{C}) + t) \leq e^{-\frac{t^2}{16(\text{diam}(\mathcal{C}))^2}},
\]
where $\text{diam}(\mathcal{C}) = \sup_{c \in \mathcal{C}} \|c\|_2$.

Note: A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be L-Lipschitz for some $L \geq 0$ with respect to the Euclidean norm $\| \cdot \|_2$ if
\[
|f(x) - f(y)| \leq L \|x - y\|_2, \ \forall x, y \in \mathbb{R}^n.
\]

Also, the pointwise supremum $f(x) = \sup_{i \in \mathcal{I}} f_i(x)$ of an arbitrary family of convex functions $\{f_i(x)\}_{i \in \mathcal{I}}$ is convex.

Hint: First, show that $\hat{L} = \text{diam}(\mathcal{C})$ is a valid upper bound to the Lipschitz constant of $f(\varepsilon_1, \ldots, \varepsilon_n) = \sup_{c \in \mathcal{C}} \sum_{i=1}^{n} \varepsilon_i c_i$ for $\varepsilon_i \in \{-1, +1\}$. Combine then (3) with the Chernoff bound to get the desired inequality by choosing $\lambda = \frac{t}{8(\text{diam}(\mathcal{C}))^2}$.

Solution

We note that the function $f(\varepsilon_1, \ldots, \varepsilon_n) = \sup_{c \in \mathcal{C}} \sum_{i=1}^{n} \varepsilon_i c_i$ is convex, since it is the supremum of a family of linear (i.e., convex) functions. Moreover, $f(\varepsilon_1, \ldots, \varepsilon_n)$ is
Lipschitz with $\bar{L} = \sup_{c \in C} \|c\|_2$ being a valid upper bound to the Lipschitz constant. To see this, consider first the linear form $g(\varepsilon; c) = \sum_{i=1}^n c_i \varepsilon_i$ for $c \in C$. Then,

$$|g(\varepsilon; c) - g(\varepsilon'; c)| = \left| \sum_{i=1}^n c_i (\varepsilon_i - \varepsilon'_i) \right| \leq \|c\|_2 \|\varepsilon - \varepsilon'\|_2 \leq \sup_{c \in C} \|c\|_2 \|\varepsilon - \varepsilon'\|_2.$$

In (a), the Cauchy-Schwarz inequality has been used. Therefore, $g(\varepsilon; c)$ is Lipschitz and \bar{L} is a valid upper bound to the corresponding Lipschitz constant. For arbitrary $\varepsilon, \varepsilon'$, we can now see that

$$g(\varepsilon; c) \leq g(\varepsilon'; c) + \bar{L} \|\varepsilon - \varepsilon'\|_2.$$

Taking the supremum with respect to $c \in C$, first to the right hand side and then to the left, we obtain:

$$f(\varepsilon_1, \ldots, \varepsilon_n) - f(\varepsilon'_1, \ldots, \varepsilon'_n) \leq \bar{L} \|\varepsilon - \varepsilon'\|_2.$$

Moreover, interchanging $\varepsilon, \varepsilon'$, we obtain:

$$f(\varepsilon'_1, \ldots, \varepsilon'_n) - f(\varepsilon_1, \ldots, \varepsilon_n) \leq \bar{L} \|\varepsilon - \varepsilon'\|_2.$$

Combining, we have:

$$|f(\varepsilon_1, \ldots, \varepsilon_n) - f(\varepsilon'_1, \ldots, \varepsilon'_n)| \leq \bar{L} \|\varepsilon - \varepsilon'\|_2.$$

Therefore, \bar{L} is an upper bound to the Lipschitz constant of f. Employing now the Chernoff bound and (3), we obtain:

$$P(\hat{R}(C) \geq R(C) + t) \leq \frac{E\left[e^{\lambda \hat{R}(C)}\right]}{e^{\lambda \hat{R}(C) + t}} = \frac{E\left[e^{\lambda(\hat{R}(C) - R(C))}\right]}{e^{\lambda t}} \leq e^{4\lambda^2 \bar{L}^2 - \lambda t}.$$

Minimizing $4\lambda^2 \bar{L}^2 - \lambda t$ with respect to λ yields that

$$\lambda_* = \frac{t}{8\bar{L}^2} = \frac{t}{8(diam(C))^2}.$$

Plugging this value in the last inequality yields the desired result.

7. Convergence in Probability Again

Prove that $X_n \xrightarrow{p} X$ if and only if

$$\lim_{n \to \infty} E\left[\frac{|X_n - X|}{1 + |X_n - X|}\right] = 0.$$
Solution

Without loss of generality, take \(X = 0 \). We want to show that \(X_n \xrightarrow{p} 0 \) if and only if \(\lim_{n \to \infty} E \left[\frac{|X_n|}{1 + |X_n|} \right] = 0 \).

(i) \(X_n \xrightarrow{p} 0 \implies \lim_{n \to \infty} E \left[\frac{|X_n|}{1 + |X_n|} \right] = 0 \).

By \(X_n \xrightarrow{p} 0 \), we have that \(\forall \epsilon > 0 : \lim_{n \to \infty} P(|X_n| > \epsilon) = 0 \). Note that

\[
\frac{|X_n|}{1 + |X_n|} \leq \frac{|X_n|}{1 + |X_n|} \mathbb{I}(|X_n| > \epsilon) + \epsilon \mathbb{I}(|X_n| \leq \epsilon) \leq |X_n| \mathbb{I}(|X_n| > \epsilon) + \epsilon.
\]

Therefore,

\[
E \left[\frac{|X_n|}{1 + |X_n|} \right] \leq E[|X_n| \mathbb{I}(|X_n| > \epsilon)] + \epsilon = P(|X_n| > \epsilon) + \epsilon.
\]

Taking the limit, we obtain \(\lim_{n \to \infty} E \left[\frac{|X_n|}{1 + |X_n|} \right] \leq \epsilon \), and since \(\epsilon > 0 \) is arbitrary, we have that \(\lim_{n \to \infty} E \left[\frac{|X_n|}{1 + |X_n|} \right] = 0 \).

(ii) \(\lim_{n \to \infty} E \left[\frac{|X_n|}{1 + |X_n|} \right] = 0 \implies X_n \xrightarrow{p} 0 \).

Observe that the function \(f(x) = \frac{x}{x+1} \) is increasing. Therefore,

\[
\frac{\epsilon}{1 + \epsilon} \mathbb{I}(|X_n| > \epsilon) \leq \frac{|X_n|}{1 + |X_n|} \mathbb{I}(|X_n| > \epsilon) \leq \frac{|X_n|}{1 + |X_n|}.
\]

Taking expectations and then limits to both sides, we obtain:

\[
\frac{\epsilon}{1 + \epsilon} \lim_{n \to \infty} P(|X_n| > \epsilon) \leq \lim_{n \to \infty} E \left[\frac{|X_n|}{|X_n| + 1} \right] = 0
\]

Since this holds for any \(\epsilon > 0 \), we have that \(\lim_{n \to \infty} P(|X_n| > \epsilon) = 0 \), \(\forall \epsilon > 0 \). therefore, \(X_n \xrightarrow{p} 0 \).

8. Almost Sure Convergence Again [Bonus Problem]

Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables with \(P(X_n > x) = e^{-x}, x \geq 0 \). Show that

\[
\frac{\max\{X_1, X_2, \ldots, X_n\}}{\log n} \overset{a.s.}{\to} 1 \text{ as } n \to \infty.
\]

Note: Use the Borel-Cantelli Lemma.
Solution

Let \(Y_n = \max\{X_1, \ldots, X_n\} \). For \(\epsilon > 0 \), we have

\[
P \left(\frac{\max(X_1, \ldots, X_n)}{\log n} < 1 - \epsilon \right) = P \left(\frac{Y_n}{\log n} < 1 - \epsilon \right)
\]
\[
= P \left(Y_n < (1 - \epsilon) \log n \right) = P \left(\bigcap_{i=1}^{n} \left\{ X_i < (1 - \epsilon) \log n \right\} \right)
\]
\[
= \left(1 - e^{-\left(1-\epsilon\right) \log n} \right)^n
\]
\[
= \left(1 - \frac{1}{n^{1-\epsilon}} \right)^n = \left(\left(1 - \frac{1}{n^{1-\epsilon}} \right)^{n^{1-\epsilon}} \right)^{n^\epsilon}
\]

Using part (a) in the Borel-Cantelli lemma,

\[
\sum_{n=1}^{\infty} P \left(\frac{Y_n}{\log n} < 1 - \epsilon \right) = \sum_{n=1}^{\infty} \left[\left(1 - \frac{1}{n^{1-\epsilon}} \right)^{n^{1-\epsilon}} \right]^{n^\epsilon}
\]
\[
\leq \sum_{n=1}^{\infty} \left(e^{-1} \right)^{n^\epsilon} < \infty.
\]

Therefore, \(P \left(\frac{Y_n}{\log n} < 1 - \epsilon \text{ i.o.} \right) = 0 \). Using similar steps and focusing on the random variable \(X_n \), we have

\[
P \left(\frac{X_n}{\log n} > 1 + \epsilon \right) = e^{-\log n(1+\epsilon)} = \frac{1}{n^{1+\epsilon}}.
\]

Therefore,

\[
\sum_{n=1}^{\infty} P \left(\frac{X_n}{\log n} > 1 + \epsilon \right) = \sum_{n=1}^{\infty} \frac{1}{n^{1+\epsilon}} < \infty.
\]

By part (a) in the Borel-Cantelli lemma, \(P \left(\frac{X_n}{\log n} > 1 + \epsilon \text{ i.o.} \right) = 0 \). Also, \(\sum_{n=1}^{\infty} P \left(\frac{X_n}{\log n} > 1 - \epsilon \right) = \sum_{n=1}^{\infty} \frac{1}{n^{1-\epsilon}} = \infty \). By part (b) in the Borel-Cantelli lemma, \(P \left(\frac{X_n}{\log n} > 1 - \epsilon \text{ i.o.} \right) = 1 \). Combining the above results,

\[
\limsup_{n} \frac{X_n}{\log n} = 1 \text{ a.s.}
\]

and therefore, \(P \left(\frac{X_n}{\log n} > 1 + \epsilon \text{ i.o.} \right) = 0 \). Hence,

\[
\frac{Y_n}{\log n} = \max_{1 \leq i \leq n} \frac{X_i}{\log n} \text{ a.s.} \to 1.
\]